[sledge] Add frame inference solver over symbolic heaps

Reviewed By: jvillard

Differential Revision: D9846747

fbshipit-source-id: 5b3bea318
master
Josh Berdine 6 years ago committed by Facebook Github Bot
parent 83eff4c734
commit e397a43f80

@ -0,0 +1,595 @@
(*
* Copyright (c) 2018-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Frame Inference Solver over Symbolic Heaps *)
type judgment =
{ us: Var.Set.t (** (universal) vocabulary of entire judgment *)
; com: Sh.t (** common star-conjunct of minuend and subtrahend *)
; min: Sh.t (** minuend, cong strengthened by pure_approx (com * min) *)
; xs: Var.Set.t (** existentials over subtrahend and remainder *)
; sub: Sh.t (** subtrahend, with cong strengthened by min.cong *)
; zs: Var.Set.t (** existentials over remainder *)
; pgs: bool (** flag indicating whether progress has been made *) }
let pp_xs fs xs =
if not (Set.is_empty xs) then
Format.fprintf fs "∃ @[%a@] .@;<1 2>" Var.Set.pp xs
let pp fs {com; min; xs; sub; pgs} =
Format.fprintf fs "@[%s %a@ | %a@ \\- %a%a@]"
(if pgs then "t" else "f")
Sh.pp com Sh.pp min pp_xs xs Sh.pp sub
open Option.Monad_infix
let fresh_var name vs zs ~wrt =
let v, wrt = Var.fresh name ~wrt in
let vs = Set.add vs v in
let zs = Set.add zs v in
let v = Exp.var v in
(v, vs, zs, wrt)
let excise_exp {min} (us, witnesses, xs, pure, pgs) exp =
let exp' = Congruence.normalize min.cong exp in
if Exp.is_true exp' then Some (us, witnesses, xs, pure, true)
else if Set.disjoint (Exp.fv exp') xs then None
else
match exp' with
| App {op= App {op= Eq; arg= Var _ as x}}
when Set.is_subset (Exp.fv x) ~of_:xs ->
let vs = Exp.fv x in
Some (Set.union us vs, exp' :: witnesses, Set.diff xs vs, pure, true)
| App {op= App {op= Eq}; arg= Var _ as x}
when Set.is_subset (Exp.fv x) ~of_:xs ->
let vs = Exp.fv x in
Some (Set.union us vs, exp' :: witnesses, Set.diff xs vs, pure, true)
| _ -> Some (us, witnesses, xs, exp' :: pure, pgs)
let excise_pure ({us; min; xs; sub; pgs} as goal) =
[%Trace.info "@[<2>excise_pure@ %a@]" pp goal] ;
List.fold_option sub.pure ~init:(us, [], xs, [], pgs)
~f:(fun (us, witnesses, xs, pure, pgs) exp ->
excise_exp goal (us, witnesses, xs, pure, pgs) exp )
>>| fun (us, witnesses, xs, pure, pgs) ->
let min = List.fold_right witnesses ~init:min ~f:Sh.and_ in
{goal with us; min; xs; sub= Sh.with_pure pure sub; pgs}
(* [k; o)
* [l; n)
*
* _ k=l * o=n
*
* us.
* C * k-[b;m)->o,α
* M
* xs.
* b=b' * m=m' * α=α' * S R
* --------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S R
*)
let excise_seg_same ({com; min; sub} as goal) msg ssg =
[%Trace.info
"@[<hv 2>excise_seg_same@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg ssg pp
goal] ;
let {Sh.bas= b; len= m; arr= a} = msg in
let {Sh.bas= b'; len= m'; arr= a'} = ssg in
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m') (Sh.and_ (Exp.eq a a') (Sh.rem_seg ssg sub)))
in
{goal with com; min; sub}
(* [k; o)
* [l; n)
*
* _ k=l * o>n
*
* us,α,α.
* C * k-[b;m)->n,α
* k+n-[b;m)->o-n,α * o,α=n,α^o-n,α * M
* xs.
* b=b' * m=m' * α=α' * S R
* ----------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α,α. R
*)
let excise_seg_sub_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg o_n
=
[%Trace.info
"@[<hv 2>excise_seg_sub_prefix@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg
ssg pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.bas= b'; len= m'; siz= n; arr= a'} = ssg in
let o_n = Exp.integer o_n in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, _ = fresh_var "a1" us zs ~wrt in
let com = Sh.star (Sh.seg {msg with siz= n; arr= a0}) com in
let min =
Sh.and_
(Exp.eq
(Exp.memory ~siz:o ~arr:a)
(Exp.concat
(Exp.memory ~siz:n ~arr:a0)
(Exp.memory ~siz:o_n ~arr:a1)))
(Sh.star
(Sh.seg {loc= Exp.add k n; bas= b; len= m; siz= o_n; arr= a1})
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m') (Sh.and_ (Exp.eq a0 a') (Sh.rem_seg ssg sub)))
in
{goal with us; com; min; sub; zs}
(* [k; o)
* [l; n)
*
* _ k=l * o<n
*
* us.
* C * k-[b;m)->o,α
* M
* xs,α'.
* b=b' * m=m' * o,α^n-o,α'=n,α'
* * l+o-[b';m')->n-o,α' * S R
* --------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α'. R
*)
let excise_seg_min_prefix ({us; com; min; xs; sub; zs} as goal) msg ssg n_o
=
[%Trace.info
"@[<hv 2>excise_seg_min_prefix@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg
ssg pp goal] ;
let {Sh.bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let n_o = Exp.integer n_o in
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let a1', xs, zs, _ = fresh_var "a1" xs zs ~wrt:(Set.union us xs) in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m')
(Sh.and_
(Exp.eq
(Exp.concat
(Exp.memory ~siz:o ~arr:a)
(Exp.memory ~siz:n_o ~arr:a1'))
(Exp.memory ~siz:n ~arr:a'))
(Sh.star
(Sh.seg
{loc= Exp.add l o; bas= b'; len= m'; siz= n_o; arr= a1'})
(Sh.rem_seg ssg sub))))
in
{goal with us; com; min; xs; sub; zs}
(* [k; o)
* [l; n)
*
* _ k<l * k+o=l+n
*
* us,α,α.
* C * l-[b;m)->n,α
* o,α=l-k,α^n,α * k-[b;m)->l-k,α * M
* xs.
* b=b' * m=m' * α=α' * S R
* ----------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α,α. R
*)
let excise_seg_sub_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
=
[%Trace.info
"@[<hv 2>excise_seg_sub_suffix@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg
ssg pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let l_k = Exp.integer l_k in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, _ = fresh_var "a1" us zs ~wrt in
let com =
Sh.star (Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a1}) com
in
let min =
Sh.and_
(Exp.eq
(Exp.memory ~siz:o ~arr:a)
(Exp.concat
(Exp.memory ~siz:l_k ~arr:a0)
(Exp.memory ~siz:n ~arr:a1)))
(Sh.star
(Sh.seg {loc= k; bas= b; len= m; siz= l_k; arr= a0})
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m') (Sh.and_ (Exp.eq a1 a') (Sh.rem_seg ssg sub)))
in
{goal with us; com; min; sub; zs}
(* [k; o)
* [l; n)
*
* _ k<l * k+o>l+n
*
* us,α,α,α.
* C * l-[b;m)->n,α
* k-[b;m)->l-k,α * l+n-[b;m)->k+o-(l+n),α
* * o,α=l-k,α^n,α^k+o-(l+n),α * M
* xs.
* b=b' * m=m' * α=α' * S R
* -------------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α,α,α. R
*)
let excise_seg_sub_infix ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
ko_ln =
[%Trace.info
"@[<hv 2>excise_seg_sub_infix@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg ssg
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let l_k = Exp.integer l_k and ko_ln = Exp.integer ko_ln in
let ln = Exp.add l n in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
let a2, us, zs, _ = fresh_var "a2" us zs ~wrt in
let com =
Sh.star (Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a1}) com
in
let min =
Sh.and_
(Exp.eq
(Exp.memory ~siz:o ~arr:a)
(Exp.concat
(Exp.memory ~siz:l_k ~arr:a0)
(Exp.concat
(Exp.memory ~siz:n ~arr:a1)
(Exp.memory ~siz:ko_ln ~arr:a2))))
(Sh.star
(Sh.seg {loc= k; bas= b; len= m; siz= l_k; arr= a0})
(Sh.star
(Sh.seg {loc= ln; bas= b; len= m; siz= ko_ln; arr= a2})
(Sh.rem_seg msg min)))
in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m') (Sh.and_ (Exp.eq a1 a') (Sh.rem_seg ssg sub)))
in
{goal with us; com; min; sub; zs}
(* [k; o)
* [l; n)
*
* _ k<l * l<k+o * k+o<l+n
*
* us,α,α.
* C * l-[b;m)->k+o-l,α
* o,α=l-k,α^k+o-l,α * k-[b;m)->l-k,α * M
* xs,α'.
* b=b' * m=m' * k+o-l,α^l+n-(k+o),α'=n,α'
* * k+o-[b';m')->l+n-(k+o),α' * S R
* --------------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α,α,α'. R
*)
let excise_seg_min_skew ({us; com; min; xs; sub; zs} as goal) msg ssg l_k
ko_l ln_ko =
[%Trace.info
"@[<hv 2>excise_seg_min_skew@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg ssg
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let l_k = Exp.integer l_k in
let ko_l = Exp.integer ko_l in
let ln_ko = Exp.integer ln_ko in
let ko = Exp.add k o in
let a0, us, zs, wrt = fresh_var "a0" us zs ~wrt:(Set.union us xs) in
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
let a2', xs, zs, _ = fresh_var "a2" xs zs ~wrt in
let com =
Sh.star (Sh.seg {loc= l; bas= b; len= m; siz= ko_l; arr= a1}) com
in
let min =
Sh.and_
(Exp.eq
(Exp.memory ~siz:o ~arr:a)
(Exp.concat
(Exp.memory ~siz:l_k ~arr:a0)
(Exp.memory ~siz:ko_l ~arr:a1)))
(Sh.star
(Sh.seg {loc= k; bas= b; len= m; siz= l_k; arr= a0})
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m')
(Sh.and_
(Exp.eq
(Exp.concat
(Exp.memory ~siz:ko_l ~arr:a1)
(Exp.memory ~siz:ln_ko ~arr:a2'))
(Exp.memory ~siz:n ~arr:a'))
(Sh.star
(Sh.seg {loc= ko; bas= b'; len= m'; siz= ln_ko; arr= a2'})
(Sh.rem_seg ssg sub))))
in
{goal with us; com; min; xs; sub; zs}
(* [k; o)
* [l; n)
*
* _ k>l * k+o=l+n
*
* us.
* C * k-[b;m)->o,α
* M
* xs,α'.
* b=b' * m=m' * k-l,α'^o,α=n,α'
* * l-[b';m')->k-l,α' * S R
* --------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α'. R
*)
let excise_seg_min_suffix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
=
[%Trace.info
"@[<hv 2>excise_seg_min_suffix@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg
ssg pp goal] ;
let {Sh.bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let k_l = Exp.integer k_l in
let a0', xs, zs, _ = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m')
(Sh.and_
(Exp.eq
(Exp.concat
(Exp.memory ~siz:k_l ~arr:a0')
(Exp.memory ~siz:o ~arr:a))
(Exp.memory ~siz:n ~arr:a'))
(Sh.star
(Sh.seg {loc= l; bas= b'; len= m'; siz= k_l; arr= a0'})
(Sh.rem_seg ssg sub))))
in
{goal with us; com; min; xs; sub; zs}
(* [k; o)
* [l; n)
*
* _ k>l * k+o<l+n
*
* us.
* C * k-[b;m)->o,α
* M
* xs,α',α'.
* b=b' * m=m' * k-l,α'^o,α^l+n-(k+o),α'=n,α'
* * l-[b';m')->k-l,α'
* * k+o-[b';m')->l+n-(k+o),α' * S R
* ------------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α',α'. R
*)
let excise_seg_min_infix ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
ln_ko =
[%Trace.info
"@[<hv 2>excise_seg_min_infix@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg ssg
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let k_l = Exp.integer k_l in
let ln_ko = Exp.integer ln_ko in
let ko = Exp.add k o in
let a0', xs, zs, wrt = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
let a2', xs, zs, _ = fresh_var "a2" xs zs ~wrt in
let com = Sh.star (Sh.seg msg) com in
let min = Sh.rem_seg msg min in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m')
(Sh.and_
(Exp.eq
(Exp.concat
(Exp.memory ~siz:k_l ~arr:a0')
(Exp.concat
(Exp.memory ~siz:o ~arr:a)
(Exp.memory ~siz:ln_ko ~arr:a2')))
(Exp.memory ~siz:n ~arr:a'))
(Sh.star
(Sh.seg {loc= l; bas= b'; len= m'; siz= k_l; arr= a0'})
(Sh.star
(Sh.seg {loc= ko; bas= b'; len= m'; siz= ln_ko; arr= a2'})
(Sh.rem_seg ssg sub)))))
in
{goal with us; com; min; xs; sub; zs}
(* [k; o)
* [l; n)
*
* _ l<k * k<l+n * l+n<k+o
*
* us,α,α.
* C * k-[b;m)->l+n-k,α
* o,α=l+n-k,α^k+o-(l+n),α * l+n-[b;m)->k+o-(l+n),α * M
* xs,α'.
* b=b' * m=m' * k-l,α'^l+n-k,α=n,α'
* * l-[b';m')->k-l,α' * S R
* --------------------------------------------------------------------------
* us. C k-[b;m)->o,α * M xs. l-[b';m')->n,α' * S α',α,α. R
*)
let excise_seg_sub_skew ({us; com; min; xs; sub; zs} as goal) msg ssg k_l
ln_k ko_ln =
[%Trace.info
"@[<hv 2>excise_seg_sub_skew@ %a@ %a@ %a@]" Sh.pp_seg msg Sh.pp_seg ssg
pp goal] ;
let {Sh.loc= k; bas= b; len= m; siz= o; arr= a} = msg in
let {Sh.loc= l; bas= b'; len= m'; siz= n; arr= a'} = ssg in
let k_l = Exp.integer k_l in
let ln_k = Exp.integer ln_k in
let ko_ln = Exp.integer ko_ln in
let ln = Exp.add l n in
let a0', xs, zs, wrt = fresh_var "a0" xs zs ~wrt:(Set.union us xs) in
let a1, us, zs, wrt = fresh_var "a1" us zs ~wrt in
let a2, us, zs, _ = fresh_var "a2" us zs ~wrt in
let com =
Sh.star (Sh.seg {loc= k; bas= b; len= m; siz= ln_k; arr= a1}) com
in
let min =
Sh.and_
(Exp.eq
(Exp.memory ~siz:o ~arr:a)
(Exp.concat
(Exp.memory ~siz:ln_k ~arr:a1)
(Exp.memory ~siz:ko_ln ~arr:a2)))
(Sh.star
(Sh.seg {loc= ln; bas= b; len= m; siz= ko_ln; arr= a2})
(Sh.rem_seg msg min))
in
let sub =
Sh.and_ (Exp.eq b b')
(Sh.and_ (Exp.eq m m')
(Sh.and_
(Exp.eq
(Exp.concat
(Exp.memory ~siz:k_l ~arr:a0')
(Exp.memory ~siz:ln_k ~arr:a1))
(Exp.memory ~siz:n ~arr:a'))
(Sh.star
(Sh.seg {loc= l; bas= b'; len= m'; siz= k_l; arr= a0'})
(Sh.rem_seg ssg sub))))
in
{goal with us; com; min; xs; sub; zs}
(* C k-[b;m)->⟨o,α⟩ * M ⊢ ∃xs. l-[b';m')->⟨n,α'⟩ * S R *)
let excise_seg ({sub} as goal) msg ssg =
[%Trace.info "@[<2>excise_seg@ %a@ |- %a@]" Sh.pp_seg msg Sh.pp_seg ssg] ;
let {Sh.loc= k; siz= o} = msg in
let {Sh.loc= l; siz= n} = ssg in
Congruence.difference sub.cong k l
>>= fun k_l ->
match[@warning "-p"] Z.sign k_l with
(* k-l < 0 so k < l *)
| -1 -> (
let ko = Exp.add k o in
let ln = Exp.add l n in
Congruence.difference sub.cong ko ln
>>= fun ko_ln ->
match[@warning "-p"] Z.sign ko_ln with
(* k+o-(l+n) < 0 so k+o < l+n *)
| -1 -> (
Congruence.difference sub.cong l ko
>>= fun l_ko ->
match[@warning "-p"] Z.sign l_ko with
(* l-(k+o) < 0 [k; o)
* so l < k+o [l; n) *)
| -1 ->
Some
(excise_seg_min_skew goal msg ssg (Z.neg k_l) (Z.neg l_ko)
(Z.neg ko_ln))
| _ -> None )
(* k+o-(l+n) = 0 [k; o)
* so k+o = l+n [l; n) *)
| 0 -> Some (excise_seg_sub_suffix goal msg ssg (Z.neg k_l))
(* k+o-(l+n) > 0 [k; o)
* so k+o > l+n [l; n) *)
| 1 -> Some (excise_seg_sub_infix goal msg ssg (Z.neg k_l) ko_ln) )
(* k-l = 0 so k = l *)
| 0 -> (
match Congruence.difference sub.cong o n with
| None -> Some (excise_seg_same goal msg ssg)
| Some o_n -> (
match[@warning "-p"] Z.sign o_n with
(* o-n < 0 [k; o)
* so o < n [l; n) *)
| -1 -> Some (excise_seg_min_prefix goal msg ssg (Z.neg o_n))
(* o-n = 0 [k; o)
* so o = n [l; n) *)
| 0 -> Some (excise_seg_same goal msg ssg)
(* o-n > 0 [k; o)
* so o > n [l; n) *)
| 1 -> Some (excise_seg_sub_prefix goal msg ssg o_n) ) )
(* k-l > 0 so k > l *)
| 1 -> (
let ko = Exp.add k o in
let ln = Exp.add l n in
Congruence.difference sub.cong ko ln
>>= fun ko_ln ->
match[@warning "-p"] Z.sign ko_ln with
(* k+o-(l+n) < 0 [k; o)
* so k+o < l+n [l; n) *)
| -1 -> Some (excise_seg_min_infix goal msg ssg k_l (Z.neg ko_ln))
(* k+o-(l+n) = 0 [k; o)
* so k+o = l+n [l; n) *)
| 0 -> Some (excise_seg_min_suffix goal msg ssg k_l)
(* k+o-(l+n) > 0 so k+o > l+n *)
| 1 -> (
Congruence.difference sub.cong k ln
>>= fun k_ln ->
match[@warning "-p"] Z.sign k_ln with
(* k-(l+n) < 0 [k; o)
* so k < l+n [l; n) *)
| -1 ->
Some (excise_seg_sub_skew goal msg ssg k_l (Z.neg k_ln) ko_ln)
| _ -> None ) )
let excise_heap ({min; sub} as goal) =
[%Trace.info "@[<2>excise_heap@ %a@]" pp goal] ;
match
List.find_map sub.heap ~f:(fun ssg ->
List.find_map min.heap ~f:(fun msg -> excise_seg goal msg ssg) )
with
| Some goal -> Some {goal with pgs= true}
| None -> Some goal
let rec excise ({min; xs; sub; zs; pgs} as goal) =
[%Trace.info "@[<2>excise@ %a@]" pp goal] ;
if Sh.is_false min then
Some (Sh.false_ (Set.diff (Set.union min.us xs) zs))
else if Sh.is_emp sub then Some (Sh.exists zs (Sh.extend_us xs min))
else if Sh.is_false sub then None
else if not pgs then None
else {goal with pgs= false} |> excise_pure >>= excise_heap >>= excise
let excise_dnf : Sh.t -> Var.Set.t -> Sh.t -> Sh.t option =
fun minuend xs subtrahend ->
let dnf_minuend = Sh.dnf minuend in
let dnf_subtrahend = Sh.dnf subtrahend in
List.fold_option dnf_minuend
~init:(Sh.false_ (Set.union minuend.us xs))
~f:(fun remainders minuend ->
[%Trace.info "@[<2>minuend@ %a@]" Sh.pp minuend] ;
let ys, min = Sh.bind_exists minuend ~wrt:xs in
let us = min.us in
let com = Sh.emp in
List.find_map dnf_subtrahend ~f:(fun sub ->
[%Trace.info "@[<2>subtrahend@ %a@]" Sh.pp sub] ;
let sub = Sh.extend_us us sub in
let ws, sub = Sh.bind_exists sub ~wrt:xs in
let sub = Sh.and_cong min.cong sub in
let zs = Var.Set.empty in
excise {us; com; min; xs; sub; zs; pgs= true}
>>| fun remainder -> Sh.exists (Set.union ys ws) remainder )
>>| fun remainder -> Sh.or_ remainders remainder )
let infer_frame : Sh.t -> Var.Set.t -> Sh.t -> Sh.t option =
fun minuend xs subtrahend ->
[%Trace.call fun {pf} ->
pf "@[<hv>%a@ \\- %a%a@]" Sh.pp minuend pp_xs xs Sh.pp subtrahend]
;
assert (Set.disjoint minuend.us xs) ;
assert (Set.is_subset xs ~of_:subtrahend.us) ;
assert (Set.is_subset (Set.diff subtrahend.us xs) ~of_:minuend.us) ;
excise_dnf minuend xs subtrahend
|>
[%Trace.retn fun {pf} r ->
pf "%a" (Option.pp "%a" Sh.pp) r ;
Option.iter r ~f:(fun frame ->
let lost = Set.diff (Set.union minuend.us xs) frame.us in
let gain = Set.diff frame.us (Set.union minuend.us xs) in
assert (Set.is_empty lost || Trace.report "lost: %a" Var.Set.pp lost) ;
assert (
Set.is_empty gain || Trace.report "gained: %a" Var.Set.pp gain )
)]

@ -0,0 +1,15 @@
(*
* Copyright (c) 2018-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Frame Inference Solver over Symbolic Heaps *)
val infer_frame : Sh.t -> Var.Set.t -> Sh.t -> Sh.t option
(** If [infer_frame p xs q] is [Some r], then [p ⊢ ∃xs. q * r]. The
vocabulary of [r] is the vocabulary of [q] union [xs]. A goal is for [r]
to be strong enough that for every model of [r], there exists an
extension of it satisfying [q], such that the combination (with [xs]
projected out) satisfies [p]. *)
Loading…
Cancel
Save