[sledge] Strengthen simplification of division exps

Summary:
Now with rational coefficients, dividing a polynomial by an integer
can be simplified.

Reviewed By: jvillard

Differential Revision: D14251656

fbshipit-source-id: 01094bc61
master
Josh Berdine 6 years ago committed by Facebook Github Bot
parent 07d48fa7d8
commit e56646674f

@ -693,7 +693,25 @@ let simp_ule x y =
let simp_ord x y = App {op= App {op= Ord; arg= x}; arg= y} let simp_ord x y = App {op= App {op= Ord; arg= x}; arg= y}
let simp_uno x y = App {op= App {op= Uno; arg= x}; arg= y} let simp_uno x y = App {op= App {op= Uno; arg= x}; arg= y}
let simp_div x y = let sum_mul_const const sum =
assert (not (Q.equal Q.zero const)) ;
if Q.equal Q.one const then sum
else Qset.map_counts ~f:(fun _ -> Q.mul const) sum
let rec sum_to_exp typ sum =
match Qset.length sum with
| 0 -> integer Z.zero typ
| 1 -> (
match Qset.min_elt sum with
| Some (Integer _, q) -> rational q typ
| Some (arg, q) when Q.equal Q.one q -> arg
| _ -> Add {typ; args= sum} )
| _ -> Add {typ; args= sum}
and rational Q.({num; den}) typ =
simp_div (integer num typ) (integer den typ)
and simp_div x y =
match (x, y) with match (x, y) with
(* i / j *) (* i / j *)
| Integer {data= i; typ}, Integer {data= j} -> | Integer {data= i; typ}, Integer {data= j} ->
@ -701,6 +719,9 @@ let simp_div x y =
integer (Z.bdiv ~bits i j) typ integer (Z.bdiv ~bits i j) typ
(* e / 1 ==> e *) (* e / 1 ==> e *)
| e, Integer {data} when Z.equal Z.one data -> e | e, Integer {data} when Z.equal Z.one data -> e
(* (∑ᵢ cᵢ × Xᵢ) / z ==> ∑ᵢ cᵢ/z × Xᵢ *)
| Add {typ; args}, Integer {data} ->
sum_to_exp typ (sum_mul_const Q.(inv (of_z data)) args)
| _ -> App {op= App {op= Div; arg= x}; arg= y} | _ -> App {op= App {op= Div; arg= x}; arg= y}
let simp_udiv x y = let simp_udiv x y =
@ -733,9 +754,6 @@ let simp_urem x y =
| _, Integer {data; typ} when Z.equal Z.one data -> integer Z.zero typ | _, Integer {data; typ} when Z.equal Z.one data -> integer Z.zero typ
| _ -> App {op= App {op= Urem; arg= x}; arg= y} | _ -> App {op= App {op= Urem; arg= x}; arg= y}
let rational Q.({num; den}) typ =
simp_div (integer num typ) (integer den typ)
(* Sums of polynomial terms represented by multisets. A sum ∑ᵢ cᵢ × (* Sums of polynomial terms represented by multisets. A sum ∑ᵢ cᵢ ×
X of monomials X with coefficients c is represented by a X of monomials X with coefficients c is represented by a
multiset where the elements are X with multiplicities c. A constant multiset where the elements are X with multiplicities c. A constant
@ -757,20 +775,8 @@ module Sum = struct
let map sum ~f = let map sum ~f =
Qset.fold sum ~init:empty ~f:(fun e c sum -> add c (f e) sum) Qset.fold sum ~init:empty ~f:(fun e c sum -> add c (f e) sum)
let mul_const const sum = let mul_const = sum_mul_const
assert (not (Q.equal Q.zero const)) ; let to_exp = sum_to_exp
if Q.equal Q.one const then sum
else Qset.map_counts ~f:(fun _ -> Q.mul const) sum
let to_exp typ sum =
match Qset.length sum with
| 0 -> integer Z.zero typ
| 1 -> (
match Qset.min_elt sum with
| Some (Integer _, q) -> rational q typ
| Some (arg, q) when Q.equal Q.one q -> arg
| _ -> Add {typ; args= sum} )
| _ -> Add {typ; args= sum}
end end
let rec simp_add_ typ es poly = let rec simp_add_ typ es poly =

Loading…
Cancel
Save