@ -693,7 +693,25 @@ let simp_ule x y =
let simp_ord x y = App { op = App { op = Ord ; arg = x } ; arg = y }
let simp_ord x y = App { op = App { op = Ord ; arg = x } ; arg = y }
let simp_uno x y = App { op = App { op = Uno ; arg = x } ; arg = y }
let simp_uno x y = App { op = App { op = Uno ; arg = x } ; arg = y }
let simp_div x y =
let sum_mul_const const sum =
assert ( not ( Q . equal Q . zero const ) ) ;
if Q . equal Q . one const then sum
else Qset . map_counts ~ f : ( fun _ -> Q . mul const ) sum
let rec sum_to_exp typ sum =
match Qset . length sum with
| 0 -> integer Z . zero typ
| 1 -> (
match Qset . min_elt sum with
| Some ( Integer _ , q ) -> rational q typ
| Some ( arg , q ) when Q . equal Q . one q -> arg
| _ -> Add { typ ; args = sum } )
| _ -> Add { typ ; args = sum }
and rational Q . ( { num ; den } ) typ =
simp_div ( integer num typ ) ( integer den typ )
and simp_div x y =
match ( x , y ) with
match ( x , y ) with
(* i / j *)
(* i / j *)
| Integer { data = i ; typ } , Integer { data = j } ->
| Integer { data = i ; typ } , Integer { data = j } ->
@ -701,6 +719,9 @@ let simp_div x y =
integer ( Z . bdiv ~ bits i j ) typ
integer ( Z . bdiv ~ bits i j ) typ
(* e / 1 ==> e *)
(* e / 1 ==> e *)
| e , Integer { data } when Z . equal Z . one data -> e
| e , Integer { data } when Z . equal Z . one data -> e
(* ( ∑ᵢ cᵢ × Xᵢ ) / z ==> ∑ᵢ cᵢ/z × Xᵢ *)
| Add { typ ; args } , Integer { data } ->
sum_to_exp typ ( sum_mul_const Q . ( inv ( of_z data ) ) args )
| _ -> App { op = App { op = Div ; arg = x } ; arg = y }
| _ -> App { op = App { op = Div ; arg = x } ; arg = y }
let simp_udiv x y =
let simp_udiv x y =
@ -733,9 +754,6 @@ let simp_urem x y =
| _ , Integer { data ; typ } when Z . equal Z . one data -> integer Z . zero typ
| _ , Integer { data ; typ } when Z . equal Z . one data -> integer Z . zero typ
| _ -> App { op = App { op = Urem ; arg = x } ; arg = y }
| _ -> App { op = App { op = Urem ; arg = x } ; arg = y }
let rational Q . ( { num ; den } ) typ =
simp_div ( integer num typ ) ( integer den typ )
(* Sums of polynomial terms represented by multisets. A sum ∑ᵢ cᵢ ×
(* Sums of polynomial terms represented by multisets. A sum ∑ᵢ cᵢ ×
X ᵢ of monomials X ᵢ with coefficients c ᵢ is represented by a
X ᵢ of monomials X ᵢ with coefficients c ᵢ is represented by a
multiset where the elements are X ᵢ with multiplicities c ᵢ . A constant
multiset where the elements are X ᵢ with multiplicities c ᵢ . A constant
@ -757,20 +775,8 @@ module Sum = struct
let map sum ~ f =
let map sum ~ f =
Qset . fold sum ~ init : empty ~ f : ( fun e c sum -> add c ( f e ) sum )
Qset . fold sum ~ init : empty ~ f : ( fun e c sum -> add c ( f e ) sum )
let mul_const const sum =
let mul_const = sum_mul_const
assert ( not ( Q . equal Q . zero const ) ) ;
let to_exp = sum_to_exp
if Q . equal Q . one const then sum
else Qset . map_counts ~ f : ( fun _ -> Q . mul const ) sum
let to_exp typ sum =
match Qset . length sum with
| 0 -> integer Z . zero typ
| 1 -> (
match Qset . min_elt sum with
| Some ( Integer _ , q ) -> rational q typ
| Some ( arg , q ) when Q . equal Q . one q -> arg
| _ -> Add { typ ; args = sum } )
| _ -> Add { typ ; args = sum }
end
end
let rec simp_add_ typ es poly =
let rec simp_add_ typ es poly =