[sledge sem] Implement and verify cast expressions

Summary:
This commit adds truncation, sign extension and zero extension to LLVM
and the Convert instruction to LLAIR.

The LLVM instructions use HOL's build-in word/int and word/num
conversions. Sanity-checking theorems prove that zero-extending leaves
the value of the word unchanged when considered as an unsigned value,
and that sign-extending leaves the value unchanged when considered as a
signed value.

The llair semantics for Convert uses the truncate_2comp function which
converts an integer to another integer as though they were represented
in 2's complement. e.g. truncate_2comp 255 16 = 255, truncate_2comp
255 8 = -1, truncate_2comp -3 2 = 1

Reviewed By: jberdine

Differential Revision: D18058833

fbshipit-source-id: df9de480c
master
Scott Owens 5 years ago committed by Facebook Github Bot
parent 86024892e1
commit e9296d31b6

@ -57,6 +57,8 @@ Datatype:
| Select exp exp | Select exp exp
(* Args: Record, index, value *) (* Args: Record, index, value *)
| Update exp exp exp | Update exp exp exp
(* Args: signed?, to-type, from-type, value *)
| Convert bool typ typ exp
End End
Datatype: Datatype:
@ -166,6 +168,18 @@ Termination
first_x_assum drule >> decide_tac first_x_assum drule >> decide_tac
End End
(* The size of a type in bits *)
Definition sizeof_bits_def:
(sizeof_bits (IntegerT n) = n)
(sizeof_bits (PointerT t) = pointer_size)
(sizeof_bits (ArrayT t n) = n * sizeof_bits t)
(sizeof_bits (TupleT ts) = sum (map sizeof_bits ts))
Termination
WF_REL_TAC `measure typ_size` >> simp [] >>
Induct >> rw [definition "typ_size_def"] >> simp [] >>
first_x_assum drule >> decide_tac
End
Definition first_class_type_def: Definition first_class_type_def:
(first_class_type (IntegerT _) T) (first_class_type (IntegerT _) T)
(first_class_type (PointerT _) T) (first_class_type (PointerT _) T)
@ -195,12 +209,6 @@ Definition bool2v_def:
bool2v b = FlatV (IntV (if b then 1 else 0) 1) bool2v b = FlatV (IntV (if b then 1 else 0) 1)
End End
(* The integer, interpreted as 2's complement, fits in the given number of bits *)
Definition ifits_def:
ifits (i:int) size
0 < size -(2 ** (size - 1)) i i < 2 ** (size - 1)
End
(* The natural number, interpreted as unsigned, fits in the given number of bits *) (* The natural number, interpreted as unsigned, fits in the given number of bits *)
Definition nfits_def: Definition nfits_def:
nfits (n:num) size nfits (n:num) size
@ -208,7 +216,8 @@ Definition nfits_def:
End End
(* Convert an integer to an unsigned number, following the 2's complement, (* Convert an integer to an unsigned number, following the 2's complement,
* assuming (ifits i size) *) * assuming (ifits i size). This looks like what OCaml's Z.extract does, which
* is used in LLAIR for Convert expressions *)
Definition i2n_def: Definition i2n_def:
i2n (IntV i size) : num = i2n (IntV i size) : num =
if i < 0 then if i < 0 then
@ -307,7 +316,19 @@ Inductive eval_exp:
eval_exp s e3 r eval_exp s e3 r
idx < length vals idx < length vals
eval_exp s (Update e1 e2 e3) (AggV (list_update r idx vals))) eval_exp s (Update e1 e2 e3) (AggV (list_update r idx vals)))
(∀s to_t from_t e v size.
eval_exp s e (FlatV v)
size = sizeof_bits to_t
eval_exp s (Convert F to_t from_t e) (FlatV (IntV (truncate_2comp (&i2n v) size) size)))
(∀s to_t from_t e size size1 i.
eval_exp s e (FlatV (IntV i size1))
size = sizeof_bits to_t
eval_exp s (Convert T to_t from_t e) (FlatV (IntV (truncate_2comp i size) size)))
End End

@ -16,56 +16,6 @@ new_theory "llair_prop";
numLib.prefer_num (); numLib.prefer_num ();
Theorem ifits_w2i:
∀(w : 'a word). ifits (w2i w) (dimindex (:'a))
Proof
rw [ifits_def, GSYM INT_MIN_def] >>
metis_tac [INT_MIN, w2i_ge, integer_wordTheory.INT_MAX_def, w2i_le,
intLib.COOPER_PROVE ``!(x:int) y. x y - 1 x < y``]
QED
Theorem truncate_2comp_fits:
∀i size. 0 < size ifits (truncate_2comp i size) size
Proof
rw [truncate_2comp_def, ifits_def] >>
qmatch_goalsub_abbrev_tac `(i + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`]
>- (
`0 (i + s1) % s2` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [])
>- (
`(i + s1) % s2 < 2 * s1` suffices_by intLib.COOPER_TAC >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
drule INT_MOD_BOUNDS >>
rw [Abbr `s1`, Abbr `s2`])
QED
Theorem fits_ident:
∀i size. 0 < size (ifits i size truncate_2comp i size = i)
Proof
rw [ifits_def, truncate_2comp_def] >>
rw [intLib.COOPER_PROVE ``!(x:int) y z. x - y = z <=> x = y + z``] >>
qmatch_goalsub_abbrev_tac `(_ + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`] >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
eq_tac >>
rw []
>- (
simp [Once INT_ADD_COMM] >>
irule INT_LESS_MOD >>
rw [] >>
intLib.COOPER_TAC)
>- (
`0 (i + s1) % (2 * s1)` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
>- (
`(i + s1) % (2 * s1) < 2 * s1` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
QED
Theorem i2n_n2i: Theorem i2n_n2i:
!n size. 0 < size (nfits n size (i2n (n2i n size) = n)) !n size. 0 < size (nfits n size (i2n (n2i n size) = n))
Proof Proof
@ -179,7 +129,8 @@ Definition exp_uses_def:
(exp_uses (Sub _ e1 e2) = exp_uses e1 exp_uses e2) (exp_uses (Sub _ e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Record es) = bigunion (set (map exp_uses es))) (exp_uses (Record es) = bigunion (set (map exp_uses es)))
(exp_uses (Select e1 e2) = exp_uses e1 exp_uses e2) (exp_uses (Select e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Update e1 e2 e3) = exp_uses e1 exp_uses e2 exp_uses e3) (exp_uses (Update e1 e2 e3) = exp_uses e1 exp_uses e2 exp_uses e3)
(exp_uses (Convert _ _ _ e) = exp_uses e)
Termination Termination
WF_REL_TAC `measure exp_size` >> rw [] >> WF_REL_TAC `measure exp_size` >> rw [] >>
Induct_on `es` >> rw [exp_size_def] >> res_tac >> rw [] Induct_on `es` >> rw [exp_size_def] >> res_tac >> rw []
@ -218,6 +169,8 @@ Proof
Induct_on `es` >> rw [] >> fs [drestrict_union_eq]) Induct_on `es` >> rw [] >> fs [drestrict_union_eq])
>- metis_tac [] >- metis_tac []
>- metis_tac [] >- metis_tac []
>- metis_tac []
>- metis_tac []
QED QED
Theorem eval_exp_ignores_unused: Theorem eval_exp_ignores_unused:

@ -72,6 +72,10 @@ Datatype:
phi = Phi reg ty ((label option, arg) alist) phi = Phi reg ty ((label option, arg) alist)
End End
Datatype:
cast_op = Trunc | Zext | Sext | Ptrtoint | Inttoptr
End
(* (*
* The Exit instruction below models a system/libc call to exit the program. The * The Exit instruction below models a system/libc call to exit the program. The
* semantics needs some way to tell the difference between normally terminated * semantics needs some way to tell the difference between normally terminated
@ -99,8 +103,7 @@ Datatype:
| Load reg ty targ | Load reg ty targ
| Store targ targ | Store targ targ
| Gep reg ty targ (targ list) | Gep reg ty targ (targ list)
| Ptrtoint reg targ ty | Cast reg cast_op targ ty
| Inttoptr reg targ ty
| Icmp reg cond ty arg arg | Icmp reg cond ty arg arg
| Call reg ty fun_name (targ list) | Call reg ty fun_name (targ list)
(* C++ runtime functions *) (* C++ runtime functions *)
@ -440,6 +443,34 @@ Definition get_comp_def:
(get_comp Ult = $<+) (get_comp Ult = $<+)
End End
Definition do_cast_def:
(do_cast Trunc v t =
option_join (option_map (λw. w64_cast (n2w w) t) (unsigned_v_to_num v)))
(do_cast Zext v t =
option_join (option_map (λw. w64_cast (n2w w) t) (unsigned_v_to_num v)))
(do_cast Sext v t =
option_join (option_map (λi. w64_cast (i2w i) t) (signed_v_to_int v)))
(do_cast Ptrtoint v t =
case v of
| FlatV (PtrV w) => w64_cast w t
| _ => None)
(do_cast Inttoptr v t =
option_join (option_map mk_ptr (unsigned_v_to_num v)))
End
(*
EVAL ``do_cast Trunc (FlatV (W32V 4294967295w)) (IntT W8) = Some (FlatV (W8V 255w))``
EVAL ``do_cast Trunc (FlatV (W32V 511w)) (IntT W8) = Some (FlatV (W8V 255w))``
EVAL ``do_cast Trunc (FlatV (W32V 255w)) (IntT W8) = Some (FlatV (W8V 255w))``
EVAL ``do_cast Trunc (FlatV (W32V 4294967166w)) (IntT W8) = Some (FlatV (W8V 126w))``
EVAL ``do_cast Trunc (FlatV (W32V 257w)) (IntT W8) = Some (FlatV (W8V 1w))``
EVAL ``do_cast Zext (FlatV (W8V 127w)) (IntT W32) = Some (FlatV (W32V 127w))``
EVAL ``do_cast Zext (FlatV (W8V 129w)) (IntT W32) = Some (FlatV (W32V 129w))``
EVAL ``do_cast Sext (FlatV (W8V 127w)) (IntT W32) = Some (FlatV (W32V 127w))``
EVAL ``do_cast Sext (FlatV (W8V 129w)) (IntT W32) = Some (FlatV (W32V (n2w (2 ** 32 - 1 - 255 + 129))))``
*)
Definition do_icmp_def: Definition do_icmp_def:
do_icmp c v1 v2 = do_icmp c v1 v2 =
option_map (\b. <| poison := (v1.poison v2.poison); value := bool_to_v b |>) option_map (\b. <| poison := (v1.poison v2.poison); value := bool_to_v b |>)
@ -625,26 +656,16 @@ Inductive step_instr:
value := ptr |> value := ptr |>
s))) s)))
(∀prog s r t1 a1 t v1 int_v w. (∀prog s cop r t1 a1 t v1 v2.
eval s a1 = Some v1 eval s a1 = Some v1
v1.value = FlatV (PtrV w) do_cast cop v1.value t = Some v2
w64_cast w t = Some int_v
step_instr prog s step_instr prog s
(Ptrtoint r (t1, a1) t) Tau (Cast r cop (t1, a1) t) Tau
(inc_pc (update_result r <| poison := v1.poison; value := int_v |> s))) (inc_pc (update_result r <| poison := v1.poison; value := v2 |> s)))
(∀prog s r t1 a1 t ptr v1 n.
eval s a1 = Some v1
unsigned_v_to_num v1.value = Some n
mk_ptr n = Some ptr
step_instr prog s
(Inttoptr r (t1, a1) t) Tau
(inc_pc (update_result r <| poison := v1.poison; value := ptr |> s)))
(∀prog s r c t a1 a2 v3 v1 v2. (∀prog s r c t a1 a2 v3 v1 v2.
eval s a1 = Some v1 eval s a1 = Some v1
eval s a2 = Some v2 eval s a2 = Some v2
do_icmp c v1 v2 = Some v3 do_icmp c v1 v2 = Some v3

@ -10,6 +10,7 @@
open HolKernel boolLib bossLib Parse; open HolKernel boolLib bossLib Parse;
open pairTheory listTheory rich_listTheory arithmeticTheory wordsTheory; open pairTheory listTheory rich_listTheory arithmeticTheory wordsTheory;
open pred_setTheory finite_mapTheory relationTheory llistTheory pathTheory; open pred_setTheory finite_mapTheory relationTheory llistTheory pathTheory;
open optionTheory;
open logrootTheory numposrepTheory; open logrootTheory numposrepTheory;
open settingsTheory miscTheory memory_modelTheory llvmTheory; open settingsTheory miscTheory memory_modelTheory llvmTheory;
@ -290,6 +291,132 @@ QED
(* ----- Theorems about the step function ----- *) (* ----- Theorems about the step function ----- *)
Theorem w64_cast_some:
∀w t.
(w64_cast w t = Some v)
v = FlatV (W1V (w2w w)) t = IntT W1
v = FlatV (W8V (w2w w)) t = IntT W8
v = FlatV (W32V (w2w w)) t = IntT W32
v = FlatV (W64V (w2w w)) t = IntT W64
Proof
Cases_on `t` >> rw [w64_cast_def] >> Cases_on `s` >> rw [w64_cast_def] >>
metis_tac []
QED
Theorem unsigned_v_to_num_some:
∀v n.
(unsigned_v_to_num v = Some n)
(∃w. v = FlatV (W1V w) n = w2n w)
(∃w. v = FlatV (W8V w) n = w2n w)
(∃w. v = FlatV (W32V w) n = w2n w)
(∃w. v = FlatV (W64V w) n = w2n w)
Proof
Cases_on `v` >> rw [unsigned_v_to_num_def] >>
Cases_on `a` >> rw [unsigned_v_to_num_def]
QED
Theorem signed_v_to_int_some:
∀v n.
(signed_v_to_int v = Some n)
(∃w. v = FlatV (W1V w) n = w2i w)
(∃w. v = FlatV (W8V w) n = w2i w)
(∃w. v = FlatV (W32V w) n = w2i w)
(∃w. v = FlatV (W64V w) n = w2i w)
Proof
Cases_on `v` >> rw [signed_v_to_int_def] >>
Cases_on `a` >> rw [signed_v_to_int_def] >>
metis_tac []
QED
Theorem signed_v_to_num_some:
∀v n.
(signed_v_to_num v = Some n)
∃m. 0 m n = Num m
((∃w. v = FlatV (W1V w) m = w2i w)
(∃w. v = FlatV (W8V w) m = w2i w)
(∃w. v = FlatV (W32V w) m = w2i w)
(∃w. v = FlatV (W64V w) m = w2i w))
Proof
rw [signed_v_to_num_def, OPTION_JOIN_EQ_SOME, signed_v_to_int_some] >>
metis_tac [intLib.COOPER_PROVE ``!x:int. 0 x ¬(x < 0)``]
QED
Theorem mk_ptr_some:
∀n p. mk_ptr n = Some p n < 256 ** pointer_size p = FlatV (PtrV (n2w n))
Proof
rw [mk_ptr_def] >> metis_tac []
QED
(* How many bytes a value of the given type occupies *)
Definition sizeof_bits_def:
(sizeof_bits (IntT W1) = 1)
(sizeof_bits (IntT W8) = 8)
(sizeof_bits (IntT W32) = 32)
(sizeof_bits (IntT W64) = 64)
(sizeof_bits (PtrT _) = pointer_size)
(sizeof_bits (ArrT n t) = n * sizeof_bits t)
(sizeof_bits (StrT ts) = sum (map sizeof_bits ts))
Termination
WF_REL_TAC `measure ty_size` >> simp [] >>
Induct >> rw [ty_size_def] >> simp [] >>
first_x_assum drule >> decide_tac
End
Theorem do_cast_zext:
(∃t'. sizeof_bits t' < sizeof_bits t value_type t' v) do_cast Zext v t = Some v'
unsigned_v_to_num v = unsigned_v_to_num v'
Proof
rw [do_cast_def, OPTION_JOIN_EQ_SOME, w64_cast_some] >>
fs [unsigned_v_to_num_def, unsigned_v_to_num_some, sizeof_bits_def, value_type_cases] >>
rw [w2n_11, w2w_n2w] >>
fs [sizeof_bits_def]
>- (
`w2n w' < dimword (:1)` by metis_tac [w2n_lt] >>
fs [dimword_1])
>- (
`w2n w' < dimword (:1)` by metis_tac [w2n_lt] >>
fs [dimword_1])
>- (
`w2n w' < dimword (:8)` by metis_tac [w2n_lt] >>
fs [dimword_1])
>- (
`w2n w' < dimword (:1)` by metis_tac [w2n_lt] >>
fs [dimword_1])
>- (
`w2n w' < dimword (:8)` by metis_tac [w2n_lt] >>
fs [dimword_1])
>- (
`w2n w' < dimword (:32)` by metis_tac [w2n_lt] >>
fs [dimword_1])
QED
val trunc_thms =
LIST_CONJ (map (fn x => SIMP_RULE (srw_ss()) [] (INST_TYPE [``:'a`` |-> x] (GSYM truncate_2comp_i2w_w2i)))
[``:1``, ``:8``, ``:32``, ``:64``]);
val ifits_thms =
LIST_CONJ (map (fn x => SIMP_RULE (srw_ss()) [] (INST_TYPE [``:'a`` |-> x] (ifits_w2i )))
[``:1``, ``:8``, ``:32``, ``:64``]);
Theorem do_cast_sext:
(∃t'. sizeof_bits t' < sizeof_bits t value_type t' v) do_cast Sext v t = Some v'
signed_v_to_int v = signed_v_to_int v'
Proof
rw [do_cast_def, OPTION_JOIN_EQ_SOME, w64_cast_some] >>
fs [signed_v_to_int_def, signed_v_to_num_some, sizeof_bits_def, value_type_cases] >>
rw [] >>
fs [sizeof_bits_def, signed_v_to_int_def] >> rw [integer_wordTheory.w2w_i2w] >>
rw [trunc_thms, GSYM fits_ident] >>
rw [ifits_thms] >>
metis_tac [ifits_thms, ifits_mono, DECIDE ``1 8 1 32 8 32 1 64 8 64 32 64``]
QED
Theorem get_instr_func: Theorem get_instr_func:
∀p ip i1 i2. get_instr p ip i1 get_instr p ip i2 i1 = i2 ∀p ip i1 i2. get_instr p ip i1 get_instr p ip i2 i1 = i2
Proof Proof
@ -350,7 +477,7 @@ Proof
QED QED
Triviality not_none_eq: Triviality not_none_eq:
!x. x None ?y. x = Some y !x. x None ∃y. x = Some y
Proof Proof
Cases >> rw [] Cases >> rw []
QED QED
@ -373,8 +500,8 @@ Proof
>- metis_tac [] >> >- metis_tac [] >>
fs [deallocate_def, heap_ok_def] >> rw [flookup_fdiff] >> fs [deallocate_def, heap_ok_def] >> rw [flookup_fdiff] >>
eq_tac >> rw [] eq_tac >> rw []
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE] >- metis_tac [NOT_IS_SOME_EQ_NONE]
>- metis_tac [optionTheory.NOT_IS_SOME_EQ_NONE] >> >- metis_tac [NOT_IS_SOME_EQ_NONE] >>
fs [allocations_ok_def, stack_ok_def, EXTENSION] >> metis_tac []) fs [allocations_ok_def, stack_ok_def, EXTENSION] >> metis_tac [])
>- ( >- (
fs [globals_ok_def, deallocate_def] >> rw [] >> fs [globals_ok_def, deallocate_def] >> rw [] >>
@ -461,9 +588,6 @@ Proof
>- ( >- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >> irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def]) metis_tac [terminator_def])
>- (
irule inc_pc_invariant >> rw [get_instr_update, update_invariant] >>
metis_tac [terminator_def])
>- ( (* Call *) >- ( (* Call *)
rw [state_invariant_def] rw [state_invariant_def]
>- (fs [prog_ok_def, ip_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0]) >- (fs [prog_ok_def, ip_ok_def] >> metis_tac [NOT_NIL_EQ_LENGTH_NOT_0])
@ -701,10 +825,10 @@ QED
Triviality some_lemma: Triviality some_lemma:
∀P a b. (some (x, y). P x y) = Some (a, b) P a b ∀P a b. (some (x, y). P x y) = Some (a, b) P a b
Proof Proof
rw [optionTheory.some_def] >> rw [some_def] >>
qmatch_assum_abbrev_tac `(@x. Q x) = _` >> qmatch_assum_abbrev_tac `(@x. Q x) = _` >>
`Q (@x. Q x)` suffices_by (rw [Abbr `Q`]) >> `Q (@x. Q x)` suffices_by (rw [Abbr `Q`]) >>
`?x. Q x` suffices_by rw [SELECT_THM] >> `∃x. Q x` suffices_by rw [SELECT_THM] >>
unabbrev_all_tac >> rw [] >> unabbrev_all_tac >> rw [] >>
pairarg_tac >> fs [] >> rw [EXISTS_PROD] >> pairarg_tac >> fs [] >> rw [EXISTS_PROD] >>
metis_tac [] metis_tac []
@ -724,7 +848,7 @@ Proof
rw [] >> rw [] >>
Cases_on `get_next_step p (last path) = None ∀s. path stopped_at s` Cases_on `get_next_step p (last path) = None ∀s. path stopped_at s`
>- ( >- (
fs [get_next_step_def, optionTheory.some_def, FORALL_PROD, METIS_PROVE [] ``~x y (x y)``] >> fs [get_next_step_def, some_def, FORALL_PROD, METIS_PROVE [] ``~x y (x y)``] >>
Cases_on `∃l2 s2. sem_step p (last path) l2 s2` >> fs [] Cases_on `∃l2 s2. sem_step p (last path) l2 s2` >> fs []
>- ( (* Can take a last step from the end of the path *) >- ( (* Can take a last step from the end of the path *)
first_x_assum drule >> rw [] >> first_x_assum drule >> rw [] >>
@ -747,7 +871,7 @@ Proof
fs [finite_length] >> fs [finite_length] >>
qexists_tac `n` >> rw [] >> qexists_tac `n` >> rw [] >>
`length (plink p' (pcons (last p') l (stopped_at s))) = Some (n + Suc 1 - 1)` `length (plink p' (pcons (last p') l (stopped_at s))) = Some (n + Suc 1 - 1)`
by metis_tac [length_plink, alt_length_thm, optionTheory.OPTION_MAP_DEF] >> by metis_tac [length_plink, alt_length_thm, OPTION_MAP_DEF] >>
rw [] rw []
>- fs [sem_step_cases] >- fs [sem_step_cases]
>- metis_tac [sem_step_not_last] >- metis_tac [sem_step_not_last]
@ -777,8 +901,8 @@ Proof
drule sem_step_not_last >> simp [] >> strip_tac >> drule sem_step_not_last >> simp [] >> strip_tac >>
qpat_x_assum `sem_step p s2 l s3` mp_tac >> rw [Once sem_step_cases] qpat_x_assum `sem_step p s2 l s3` mp_tac >> rw [Once sem_step_cases]
>- ( >- (
`?i. get_instr p s2.ip i` by metis_tac [get_instr_cases, step_cases] >> `∃i. get_instr p s2.ip i` by metis_tac [get_instr_cases, step_cases] >>
`?x. i = Inl x` by (fs [last_step_cases] >> metis_tac [sumTheory.sum_CASES]) >> `∃x. i = Inl x` by (fs [last_step_cases] >> metis_tac [sumTheory.sum_CASES]) >>
drule step_same_block >> disch_then drule >> simp [] >> drule step_same_block >> disch_then drule >> simp [] >>
impl_tac impl_tac
>- (fs [last_step_cases] >> metis_tac []) >> >- (fs [last_step_cases] >> metis_tac []) >>
@ -798,7 +922,7 @@ Proof
qabbrev_tac `P = (\s2 l. sem_step p s l s2 ¬last_step p s l s2)` >> qabbrev_tac `P = (\s2 l. sem_step p s l s2 ¬last_step p s l s2)` >>
`P s' l` by (irule some_lemma >> simp [Abbr `P`]) >> `P s' l` by (irule some_lemma >> simp [Abbr `P`]) >>
pop_assum mp_tac >> simp [Abbr `P`]) >> pop_assum mp_tac >> simp [Abbr `P`]) >>
`?n. length path1 = Some n` by fs [finite_length] >> `∃n. length path1 = Some n` by fs [finite_length] >>
`n 0` by metis_tac [length_never_zero] >> `n 0` by metis_tac [length_never_zero] >>
`length (plink path path1) = Some (Suc m + n - 1)` by metis_tac [length_plink] >> `length (plink path path1) = Some (Suc m + n - 1)` by metis_tac [length_plink] >>
simp [take_pconcat, PL_def, finite_pconcat, length_plink] >> simp [take_pconcat, PL_def, finite_pconcat, length_plink] >>
@ -807,7 +931,7 @@ Proof
simp [GSYM PULL_EXISTS] >> simp [GSYM PULL_EXISTS] >>
unabbrev_all_tac >> drule unfold_last >> unabbrev_all_tac >> drule unfold_last >>
qmatch_goalsub_abbrev_tac `last_step _ (last path1) _ _` >> qmatch_goalsub_abbrev_tac `last_step _ (last path1) _ _` >>
simp [Once get_next_step_def, optionTheory.some_def, FORALL_PROD] >> simp [Once get_next_step_def, some_def, FORALL_PROD] >>
strip_tac >> strip_tac >>
simp [CONJ_ASSOC, Once CONJ_SYM] >> simp [CONJ_ASSOC, Once CONJ_SYM] >>
simp [GSYM CONJ_ASSOC] >> simp [GSYM CONJ_ASSOC] >>
@ -834,7 +958,7 @@ Proof
unabbrev_all_tac >> simp [] >> unabbrev_all_tac >> simp [] >>
fs [] >> fs [Once unfold_thm] >> fs [] >> fs [Once unfold_thm] >>
Cases_on `get_next_step p (last path)` >> simp [] >> fs [] >> rw [] >> Cases_on `get_next_step p (last path)` >> simp [] >> fs [] >> rw [] >>
fs [get_next_step_def, optionTheory.some_def, FORALL_PROD] >> fs [get_next_step_def, some_def, FORALL_PROD] >>
TRY split_pair_case_tac >> fs [sem_step_cases] >> TRY split_pair_case_tac >> fs [sem_step_cases] >>
metis_tac []) metis_tac [])
>- fs [alt_length_thm, length_never_zero]) >- fs [alt_length_thm, length_never_zero])
@ -852,7 +976,7 @@ Theorem find_path_prefix:
Proof Proof
ho_match_mp_tac finite_okpath_ind >> rw [toList_THM] ho_match_mp_tac finite_okpath_ind >> rw [toList_THM]
>- fs [observation_prefixes_cases, IN_DEF] >> >- fs [observation_prefixes_cases, IN_DEF] >>
`?s ls. obs = (s, ls)` by metis_tac [pairTheory.pair_CASES] >> `s ls. obs = (s, ls)` by metis_tac [pairTheory.pair_CASES] >>
fs [] >> fs [] >>
`∃l. length path = Some l l 0` by metis_tac [finite_length, length_never_zero] >> `∃l. length path = Some l l 0` by metis_tac [finite_length, length_never_zero] >>
`take (l-1) path = path` by metis_tac [take_all] >> `take (l-1) path = path` by metis_tac [take_all] >>
@ -894,7 +1018,7 @@ Proof
>- ( >- (
drule expand_multi_step_path >> rw [] >> drule expand_multi_step_path >> rw [] >>
rename [`toList (labels m_path) = Some m_l`, `toList (labels s_path) = Some (flat m_l)`] >> rename [`toList (labels m_path) = Some m_l`, `toList (labels s_path) = Some (flat m_l)`] >>
`?n short_l. `n short_l.
n PL s_path n PL s_path
toList (labels (take n s_path)) = Some short_l toList (labels (take n s_path)) = Some short_l
x = ((last (take n s_path)).status, filter ($ Tau) short_l)` x = ((last (take n s_path)).status, filter ($ Tau) short_l)`
@ -911,7 +1035,7 @@ Proof
impl_tac >> rw [] impl_tac >> rw []
>- metis_tac [] >> >- metis_tac [] >>
rename1 `last_step _ (last s_ext_path) last_l last_s` >> rename1 `last_step _ (last s_ext_path) last_l last_s` >>
`?s_ext_l. toList (labels s_ext_path) = Some s_ext_l` by metis_tac [LFINITE_toList, finite_labels] >> `∃s_ext_l. toList (labels s_ext_path) = Some s_ext_l` by metis_tac [LFINITE_toList, finite_labels] >>
qabbrev_tac `orig_path = take n (pconcat s_ext_path last_l (stopped_at last_s))` >> qabbrev_tac `orig_path = take n (pconcat s_ext_path last_l (stopped_at last_s))` >>
drule contract_step_path >> simp [] >> disch_then drule >> rw [] >> drule contract_step_path >> simp [] >> disch_then drule >> rw [] >>
rename [`toList (labels m_path) = Some m_l`, rename [`toList (labels m_path) = Some m_l`,
@ -930,7 +1054,7 @@ Proof
Cases_on `(last m_path).status` >> simp [] >> Cases_on `(last m_path).status` >> simp [] >>
qexists_tac `s_ext_l ++ [last_l]` >> rw []) >> qexists_tac `s_ext_l ++ [last_l]` >> rw []) >>
fs [PL_def, finite_pconcat] >> rfs [] >> fs [PL_def, finite_pconcat] >> rfs [] >>
`?m. length s_ext_path = Some m` by metis_tac [finite_length] >> `∃m. length s_ext_path = Some m` by metis_tac [finite_length] >>
`length s_ext_path = Some m` by metis_tac [finite_length] >> `length s_ext_path = Some m` by metis_tac [finite_length] >>
`length (pconcat s_ext_path last_l (stopped_at (last m_path))) = Some (m + 1)` `length (pconcat s_ext_path last_l (stopped_at (last m_path))) = Some (m + 1)`
by metis_tac [length_pconcat, alt_length_thm] >> by metis_tac [length_pconcat, alt_length_thm] >>

@ -39,8 +39,7 @@ Definition instr_next_ips_def:
(instr_next_ips (Load _ _ _) ip = { inc_pc ip }) (instr_next_ips (Load _ _ _) ip = { inc_pc ip })
(instr_next_ips (Store _ _) ip = { inc_pc ip }) (instr_next_ips (Store _ _) ip = { inc_pc ip })
(instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip }) (instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Ptrtoint _ _ _) ip = { inc_pc ip }) (instr_next_ips (Cast _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Inttoptr _ _ _) ip = { inc_pc ip })
(instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip }) (instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Call _ _ _ _) ip = { inc_pc ip }) (instr_next_ips (Call _ _ _ _) ip = { inc_pc ip })
(instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip }) (instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip })
@ -163,8 +162,7 @@ Definition instr_uses_def:
arg_to_regs a1 arg_to_regs a2) arg_to_regs a1 arg_to_regs a2)
(instr_uses (Gep _ _ (_, a) targs) = (instr_uses (Gep _ _ (_, a) targs) =
arg_to_regs a BIGUNION (set (map (arg_to_regs o snd) targs))) arg_to_regs a BIGUNION (set (map (arg_to_regs o snd) targs)))
(instr_uses (Ptrtoint _ (_, a) _) = arg_to_regs a) (instr_uses (Cast _ _ (_, a) _) = arg_to_regs a)
(instr_uses (Inttoptr _ (_, a) _) = arg_to_regs a)
(instr_uses (Icmp _ _ _ a1 a2) = (instr_uses (Icmp _ _ _ a1 a2) =
arg_to_regs a1 arg_to_regs a2) arg_to_regs a1 arg_to_regs a2)
(instr_uses (Call _ _ _ targs) = (instr_uses (Call _ _ _ targs) =
@ -206,8 +204,7 @@ Definition instr_assigns_def:
(instr_assigns (Alloca r _ _) = {r}) (instr_assigns (Alloca r _ _) = {r})
(instr_assigns (Load r _ _) = {r}) (instr_assigns (Load r _ _) = {r})
(instr_assigns (Gep r _ _ _) = {r}) (instr_assigns (Gep r _ _ _) = {r})
(instr_assigns (Ptrtoint r _ _) = {r}) (instr_assigns (Cast r _ _ _) = {r})
(instr_assigns (Inttoptr r _ _) = {r})
(instr_assigns (Icmp r _ _ _ _) = {r}) (instr_assigns (Icmp r _ _ _ _) = {r})
(instr_assigns (Call r _ _ _) = {r}) (instr_assigns (Call r _ _ _) = {r})
(instr_assigns (Cxa_allocate_exn r _) = {r}) (instr_assigns (Cxa_allocate_exn r _) = {r})

@ -129,7 +129,9 @@ Definition translate_instr_to_exp_def:
(translate_instr_to_exp gmap emap (Extractvalue _ (t, a) cs) = (translate_instr_to_exp gmap emap (Extractvalue _ (t, a) cs) =
foldl (λe c. Select e (translate_const gmap c)) (translate_arg gmap emap a) cs) foldl (λe c. Select e (translate_const gmap c)) (translate_arg gmap emap a) cs)
(translate_instr_to_exp gmap emap (Insertvalue _ (t1, a1) (t2, a2) cs) = (translate_instr_to_exp gmap emap (Insertvalue _ (t1, a1) (t2, a2) cs) =
translate_updatevalue gmap (translate_arg gmap emap a1) (translate_arg gmap emap a2) cs) translate_updatevalue gmap (translate_arg gmap emap a1) (translate_arg gmap emap a2) cs)
(translate_instr_to_exp gmap emap (Cast _ cop (t1, a1) t) =
Convert (cop = Sext) (translate_ty t) (translate_ty t1) (translate_arg gmap emap a1))
End End
(* This translation of insertvalue to update and select is quadratic in the (* This translation of insertvalue to update and select is quadratic in the
@ -236,8 +238,7 @@ Definition classify_instr_def:
(classify_instr (Alloca r t _) = Exp r (PtrT t)) (classify_instr (Alloca r t _) = Exp r (PtrT t))
(classify_instr (Gep r t _ idx) = (classify_instr (Gep r t _ idx) =
Exp r (PtrT (THE (extract_type t (map idx_to_num idx))))) Exp r (PtrT (THE (extract_type t (map idx_to_num idx)))))
(classify_instr (Ptrtoint r _ t) = Exp r t) (classify_instr (Cast r _ _ t) = Exp r t)
(classify_instr (Inttoptr r _ t) = Exp r t)
(classify_instr (Icmp r _ _ _ _) = Exp r (IntT W1)) (classify_instr (Icmp r _ _ _ _) = Exp r (IntT W1))
(* TODO *) (* TODO *)
(classify_instr (Cxa_allocate_exn r _) = Exp r ARB) (classify_instr (Cxa_allocate_exn r _) = Exp r ARB)

@ -9,7 +9,7 @@
open HolKernel boolLib bossLib Parse lcsymtacs; open HolKernel boolLib bossLib Parse lcsymtacs;
open listTheory arithmeticTheory pred_setTheory finite_mapTheory wordsTheory integer_wordTheory; open listTheory arithmeticTheory pred_setTheory finite_mapTheory wordsTheory integer_wordTheory;
open rich_listTheory pathTheory; open optionTheory rich_listTheory pathTheory;
open settingsTheory miscTheory memory_modelTheory; open settingsTheory miscTheory memory_modelTheory;
open llvmTheory llvm_propTheory llvm_ssaTheory llairTheory llair_propTheory llvm_to_llairTheory; open llvmTheory llvm_propTheory llvm_ssaTheory llairTheory llair_propTheory llvm_to_llairTheory;
@ -421,7 +421,7 @@ Proof
>- ( >- (
fs [mem_state_rel_def, fmap_rel_OPTREL_FLOOKUP] >> fs [mem_state_rel_def, fmap_rel_OPTREL_FLOOKUP] >>
CASE_TAC >> fs [] >> first_x_assum (qspec_then `g` mp_tac) >> rw [] >> CASE_TAC >> fs [] >> first_x_assum (qspec_then `g` mp_tac) >> rw [] >>
rename1 `option_rel _ _ opt` >> Cases_on `opt` >> fs [optionTheory.OPTREL_def] >> rename1 `option_rel _ _ opt` >> Cases_on `opt` >> fs [OPTREL_def] >>
(* TODO: false at the moment, need to work out the llair story on globals *) (* TODO: false at the moment, need to work out the llair story on globals *)
cheat) cheat)
(* TODO: unimplemented stuff *) (* TODO: unimplemented stuff *)
@ -503,7 +503,6 @@ QED
Theorem translate_sub_correct: Theorem translate_sub_correct:
∀prog gmap emap s1 s1' nsw nuw ty v1 v1' v2 v2' e2' e1' result. ∀prog gmap emap s1 s1' nsw nuw ty v1 v1' v2 v2' e2' e1' result.
mem_state_rel prog gmap emap s1 s1'
do_sub nuw nsw v1 v2 ty = Some result do_sub nuw nsw v1 v2 ty = Some result
eval_exp s1' e1' v1' eval_exp s1' e1' v1'
v_rel v1.value v1' v_rel v1.value v1'
@ -629,6 +628,49 @@ Proof
metis_tac [EVERY2_LUPDATE_same, LIST_REL_LENGTH, LIST_REL_EL_EQN] metis_tac [EVERY2_LUPDATE_same, LIST_REL_LENGTH, LIST_REL_EL_EQN]
QED QED
val trunc_thms =
LIST_CONJ (map (fn x => SIMP_RULE (srw_ss()) [] (INST_TYPE [``:'a`` |-> x] truncate_2comp_i2w_w2i))
[``:1``, ``:8``, ``:32``, ``:64``]);
val i2n_thms =
LIST_CONJ (map (fn x => SIMP_RULE (srw_ss()) [] (INST_TYPE [``:'a`` |-> x] (GSYM w2n_i2n)))
[``:1``, ``:8``, ``:32``, ``:64``]);
Theorem translate_cast_correct:
∀prog gmap emap s1' cop ty v1 v1' e1' result t2.
do_cast cop v1.value ty = Some result
eval_exp s1' e1' v1'
v_rel v1.value v1'
(cop = Inttoptr ∃t. ty = PtrT t)
∃v3'.
eval_exp s1' (Convert (cop = Sext) (translate_ty ty) t2 e1') v3'
v_rel result v3'
Proof
rw [] >> simp [Once eval_exp_cases, PULL_EXISTS, Once v_rel_cases] >>
Cases_on `cop Sext`
>- (
Cases_on `cop` >> fs [do_cast_def] >> rw [] >>
BasicProvers.EVERY_CASE_TAC >> fs [] >>
fs [OPTION_JOIN_EQ_SOME, w64_cast_some, signed_v_to_int_some,
unsigned_v_to_num_some, mk_ptr_some] >>
rw [sizeof_bits_def, translate_ty_def, translate_size_def] >>
rfs [] >> fs [v_rel_cases] >>
HINT_EXISTS_TAC >>
rw [w2w_n2w, trunc_thms, i2n_thms, w2w_def, pointer_size_def]) >>
fs [do_cast_def, OPTION_JOIN_EQ_SOME, PULL_EXISTS, w64_cast_some,
translate_ty_def, sizeof_bits_def, signed_v_to_int_some,
translate_size_def] >>
rfs [v_rel_cases, w2w_i2w] >> rw [trunc_thms] >>
qmatch_assum_abbrev_tac `eval_exp _ _ (FlatV (IntV i s))` >>
qexists_tac `s` >> qexists_tac `i` >> rw [] >>
unabbrev_all_tac >> rw [] >>
rw [i2w_w2i_extend, WORD_w2w_OVER_MUL, WORD_ALL_BITS] >>
Cases_on `w2w w : word1` >> rw [] >> fs [dimword_1] >>
Cases_on `n` >> rw [] >> fs [] >>
Cases_on `n'` >> rw [] >> fs []
QED
Theorem prog_ok_nonterm: Theorem prog_ok_nonterm:
∀prog i ip. ∀prog i ip.
prog_ok prog get_instr prog ip (Inl i) ¬terminator i inc_pc ip next_ips prog ip prog_ok prog get_instr prog ip (Inl i) ¬terminator i inc_pc ip next_ips prog ip
@ -644,6 +686,25 @@ Proof
rw [EXISTS_OR_THM, inc_pc_def, inc_bip_def] rw [EXISTS_OR_THM, inc_pc_def, inc_bip_def]
QED QED
Theorem const_idx_uses[simp]:
∀cs gmap e.
exp_uses (foldl (λe c. Select e (translate_const gmap c)) e cs) = exp_uses e
Proof
Induct_on `cs` >> rw [exp_uses_def] >>
rw [translate_const_no_reg, EXTENSION]
QED
Theorem exp_uses_trans_upd_val[simp]:
∀cs gmap e1 e2. exp_uses (translate_updatevalue gmap e1 e2 cs) =
(if cs = [] then {} else exp_uses e1) exp_uses e2
Proof
Induct_on `cs` >> rw [exp_uses_def, translate_updatevalue_def] >>
rw [translate_const_no_reg, EXTENSION] >>
metis_tac []
QED
(* TODO: identify some lemmas to cut down on the duplicated proof in the very
* similar cases *)
Theorem translate_instr_to_exp_correct: Theorem translate_instr_to_exp_correct:
∀gmap emap instr r t s1 s1' s2 prog l. ∀gmap emap instr r t s1 s1' s2 prog l.
is_ssa prog prog_ok prog is_ssa prog prog_ok prog
@ -676,30 +737,29 @@ Proof
disch_then drule >> disch_then drule >> disch_then drule >> disch_then drule >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> rw [] >> disch_then drule >> disch_then drule >> rw [] >>
drule translate_sub_correct >> disch_then drule >> drule translate_sub_correct >>
disch_then (qspecl_then [`v'`, `v''`] mp_tac) >> simp [] >> simp [] >>
disch_then (qspecl_then [`s1'`, `v'`, `v''`] mp_tac) >> simp [] >>
disch_then drule >> disch_then drule >> rw [] >> disch_then drule >> disch_then drule >> rw [] >>
rename1 `eval_exp _ (Sub _ _ _) res_v` >> rename1 `eval_exp _ (Sub _ _ _) res_v` >>
rename1 `r _` >> rename1 `r _` >>
simp [inc_pc_def, llvmTheory.inc_pc_def] >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw [] Cases_on `r regs_to_keep` >> rw []
>- ( >- (
simp [step_inst_cases, PULL_EXISTS] >> simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] qexists_tac `res_v` >> rw [] >>
>- simp [inc_pc_def, llvmTheory.inc_pc_def] rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
>- ( irule mem_state_rel_update_keep >> rw [])
rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
simp [llvmTheory.inc_pc_def] >>
irule mem_state_rel_update_keep >> rw []
>- rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def]
>- (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def])
>- fs [mem_state_rel_def]))
>- rw [inc_pc_def, llvmTheory.inc_pc_def]
>- ( >- (
simp [llvmTheory.inc_pc_def] >>
irule mem_state_rel_update >> rw [] irule mem_state_rel_update >> rw []
>- ( >- (
fs [exp_uses_def] fs [exp_uses_def]
@ -708,72 +768,142 @@ Proof
rename1 `flookup _ r_tmp` >> rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >> qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >> simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
>- rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def]
>- (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
metis_tac [])) >> metis_tac [])) >>
conj_tac conj_tac
>- ( (* Extractvalue *) >- ( (* Extractvalue *)
rw [step_instr_cases] >> rw [step_instr_cases, get_instr_cases, update_result_def] >>
simp [llvmTheory.inc_pc_def, update_result_def, FLOOKUP_UPDATE] >> qpat_x_assum `Extractvalue _ _ _ = el _ _` (assume_tac o GSYM) >>
drule translate_extract_correct >> rpt (disch_then drule) >>
drule translate_arg_correct >> disch_then drule >>
`arg_to_regs a live prog s1.ip` `arg_to_regs a live prog s1.ip`
by ( by (
fs [get_instr_cases] >>
qpat_x_assum `Extractvalue _ _ _ = el _ _` (mp_tac o GSYM) >>
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases, simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def]) >> instr_uses_def]) >>
drule translate_extract_correct >> rpt (disch_then drule) >>
drule translate_arg_correct >> disch_then drule >>
simp [] >> strip_tac >> simp [] >> strip_tac >>
disch_then drule >> simp [] >> rw [] >> disch_then drule >> simp [] >> rw [] >>
rename1 `eval_exp _ (foldl _ _ _) res_v` >> rename1 `eval_exp _ (foldl _ _ _) res_v` >>
rw [inc_bip_def, inc_pc_def] >> rw [inc_pc_def, llvmTheory.inc_pc_def] >>
rename1 `r _` >> rename1 `r _` >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw [] Cases_on `r regs_to_keep` >> rw []
>- ( >- (
simp [step_inst_cases, PULL_EXISTS] >> simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >> qexists_tac `res_v` >> rw [] >>
rw [update_results_def] >> rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
(* TODO: unfinished *) irule mem_state_rel_update_keep >> rw [])
cheat) >- (
>- cheat) >> irule mem_state_rel_update >> rw []
>- (
Cases_on `a` >>
fs [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
metis_tac [])) >>
conj_tac conj_tac
>- ( (* Updatevalue *) >- ( (* Updatevalue *)
rw [step_instr_cases] >> rw [step_instr_cases, get_instr_cases, update_result_def] >>
simp [llvmTheory.inc_pc_def, update_result_def, FLOOKUP_UPDATE] >> qpat_x_assum `Insertvalue _ _ _ _ = el _ _` (assume_tac o GSYM) >>
drule translate_update_correct >> rpt (disch_then drule) >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >>
`arg_to_regs a1 live prog s1.ip `arg_to_regs a1 live prog s1.ip
arg_to_regs a2 live prog s1.ip` arg_to_regs a2 live prog s1.ip`
by ( by (
fs [get_instr_cases] >>
qpat_x_assum `Insertvalue _ _ _ _ = el _ _` (mp_tac o GSYM) >>
ONCE_REWRITE_TAC [live_gen_kill] >> ONCE_REWRITE_TAC [live_gen_kill] >>
simp [SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases, simp [SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def]) >> instr_uses_def]) >>
simp [] >> strip_tac >> strip_tac >> drule translate_update_correct >> rpt (disch_then drule) >>
disch_then (qspecl_then [`v'`, `v''`] mp_tac) >> simp [] >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> disch_then drule >>
rw [] >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
rename1 `eval_exp _ (translate_updatevalue _ _ _ _) res_v` >> disch_then drule >>
rw [inc_pc_def, inc_bip_def] >> simp [] >> strip_tac >> strip_tac >>
rename1 `r _` >> disch_then (qspecl_then [`v'`, `v''`] mp_tac) >> simp [] >>
Cases_on `r regs_to_keep` >> rw [] disch_then drule >> disch_then drule >>
rw [] >>
rename1 `eval_exp _ (translate_updatevalue _ _ _ _) res_v` >>
rw [inc_pc_def, llvmTheory.inc_pc_def] >>
rename1 `r _` >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw []
>- ( >- (
simp [step_inst_cases, PULL_EXISTS] >> simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >> qexists_tac `res_v` >> rw [] >>
rw [update_results_def] >> rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
(* TODO: unfinished *) irule mem_state_rel_update_keep >> rw [])
cheat) >- (
>- cheat) >> irule mem_state_rel_update >> strip_tac
(* Other expressions, Icmp, Inttoptr, Ptrtoint, Gep, Alloca *) >- (
Cases_on `a1` >> Cases_on `a2` >>
rw [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
rw [] >> metis_tac [] ))>>
conj_tac
>- ( (* Cast *)
rw [step_instr_cases, get_instr_cases, update_result_def] >>
qpat_x_assum `Cast _ _ _ _ = el _ _` (assume_tac o GSYM) >>
`arg_to_regs a1 live prog s1.ip`
by (
simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases,
instr_uses_def] >>
metis_tac []) >>
fs [] >>
first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >>
disch_then drule >> disch_then drule >> rw [] >>
drule translate_cast_correct >> ntac 2 (disch_then drule) >>
simp [] >>
disch_then (qspec_then `translate_ty t1` mp_tac) >>
impl_tac
(* TODO: prog_ok should enforce that the type is consistent *)
>- cheat >>
rw [] >>
rename1 `eval_exp _ (Convert _ _ _ _) res_v` >>
rw [inc_pc_def, llvmTheory.inc_pc_def] >>
rename1 `r _` >>
`assigns prog s1.ip = {r}`
by rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >>
`reachable prog s1.ip` by fs [mem_state_rel_def] >>
`s1.ip with i := inc_bip (Offset idx) next_ips prog s1.ip`
by (
drule prog_ok_nonterm >>
simp [get_instr_cases, PULL_EXISTS] >>
ntac 3 (disch_then drule) >>
simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >>
Cases_on `r regs_to_keep` >> rw []
>- (
simp [step_inst_cases, PULL_EXISTS] >>
qexists_tac `res_v` >> rw [] >>
rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >>
irule mem_state_rel_update_keep >> rw [])
>- (
irule mem_state_rel_update >> rw []
>- (
fs [exp_uses_def] >> Cases_on `a1` >> fs [translate_arg_def] >>
rename1 `flookup _ r_tmp` >>
qexists_tac `r_tmp` >> rw [] >>
simp [Once live_gen_kill] >> disj2_tac >>
simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >>
metis_tac [])) >>
(* TODO: unimplemented instruction translations *)
cheat cheat
QED QED
@ -877,7 +1007,7 @@ Proof
>- ( >- (
first_x_assum (qspec_then `x` mp_tac) >> rw [] >> first_x_assum (qspec_then `x` mp_tac) >> rw [] >>
rename1 `option_rel _ _ opt` >> Cases_on `opt` >> rename1 `option_rel _ _ opt` >> Cases_on `opt` >>
fs [optionTheory.OPTREL_def] >> fs [OPTREL_def] >>
cheat) >> cheat) >>
cheat)) cheat))
QED QED

@ -375,6 +375,87 @@ Proof
simp [INT_MOD_PLUS]) simp [INT_MOD_PLUS])
QED QED
(* The integer, interpreted as 2's complement, fits in the given number of bits *)
Definition ifits_def:
ifits (i:int) size
0 < size -(2 ** (size - 1)) i i < 2 ** (size - 1)
End
Theorem ifits_w2i:
∀(w : 'a word). ifits (w2i w) (dimindex (:'a))
Proof
rw [ifits_def, GSYM INT_MIN_def] >>
metis_tac [INT_MIN, w2i_ge, integer_wordTheory.INT_MAX_def, w2i_le,
intLib.COOPER_PROVE ``!(x:int) y. x y - 1 x < y``]
QED
Theorem truncate_2comp_fits:
∀i size. 0 < size ifits (truncate_2comp i size) size
Proof
rw [truncate_2comp_def, ifits_def] >>
qmatch_goalsub_abbrev_tac `(i + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`]
>- (
`0 (i + s1) % s2` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [])
>- (
`(i + s1) % s2 < 2 * s1` suffices_by intLib.COOPER_TAC >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
drule INT_MOD_BOUNDS >>
rw [Abbr `s1`, Abbr `s2`])
QED
Theorem ifits_mono:
∀i s1 s2. s1 s2 ifits i s1 ifits i s2
Proof
rw [ifits_def]
>- (
`&(2 ** (s1 1)) &(2 ** (s2 1))` suffices_by intLib.COOPER_TAC >>
rw [])
>- (
`&(2 ** (s1 1)) &(2 ** (s2 1))` suffices_by intLib.COOPER_TAC >>
rw [])
QED
Theorem fits_ident:
∀i size. 0 < size (ifits i size truncate_2comp i size = i)
Proof
rw [ifits_def, truncate_2comp_def] >>
rw [intLib.COOPER_PROVE ``!(x:int) y z. x - y = z <=> x = y + z``] >>
qmatch_goalsub_abbrev_tac `(_ + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`] >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
eq_tac >>
rw []
>- (
simp [Once INT_ADD_COMM] >>
irule INT_LESS_MOD >>
rw [] >>
intLib.COOPER_TAC)
>- (
`0 (i + s1) % (2 * s1)` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
>- (
`(i + s1) % (2 * s1) < 2 * s1` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
QED
Theorem i2w_w2i_extend:
i2w (w2i (w : 'a word)) : 'b word =
if ¬word_msb w then
w2w w
else
-w2w (-w)
Proof
rw [i2w_def, w2i_def] >>
BasicProvers.FULL_CASE_TAC >> fs [] >>
fs [] >>
full_simp_tac std_ss [GSYM WORD_NEG_MUL] >>
full_simp_tac std_ss [w2w_def]
QED
(* ----- Theorems about lazy lists ----- *) (* ----- Theorems about lazy lists ----- *)
Theorem toList_some: Theorem toList_some:

Loading…
Cancel
Save