[sledge] Reimplement equality solver based on "use" superterm index

Summary:
Currently detection and propagation of consequences of newly added
equality constraints is implemented using some operations that
traverse the entire representation of the equality relation. This
implementation strategy makes it relatively easy and robust to ensure
that the consequences of constraints are treated in a sound and
complete way. It does have the drawback that adding a constraint
involves work that is proportional (nonlinearly even) to the number of
all constraints. This can become a performance bottleneck.

This diff reimplements the core operations using an additional data
structure that essentially tracks the "super-term" relation between
terms, which can be used to look up the existing constraints that
might be involved in deriving new consequences when adding
equalities. This means that adding new equalities no longer takes time
proportional to the size of the entire equality context
representation, but only to the number of existing constraints that
might interact with the new constraint. Also, rewriting terms
into canonical form no longer takes time proportional to size of the
whole context, but only performs table lookups on the subterms of the
term to canonize.

Reviewed By: jvillard

Differential Revision: D25883705

fbshipit-source-id: b3f266533
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent ecfb5a1116
commit ee9aa931c4

@ -56,6 +56,7 @@ end) : S with type elt = Elt.t = struct
let inter = S.inter let inter = S.inter
let union = S.union let union = S.union
let diff_inter s t = (diff s t, inter s t) let diff_inter s t = (diff s t, inter s t)
let diff_inter_diff s t = (diff s t, inter s t, diff t s)
let union_list ss = List.fold ~f:union ss empty let union_list ss = List.fold ~f:union ss empty
let is_empty = S.is_empty let is_empty = S.is_empty
let cardinal = S.cardinal let cardinal = S.cardinal

@ -60,6 +60,7 @@ module type S = sig
val inter : t -> t -> t val inter : t -> t -> t
val union : t -> t -> t val union : t -> t -> t
val diff_inter : t -> t -> t * t val diff_inter : t -> t -> t * t
val diff_inter_diff : t -> t -> t * t * t
val union_list : t list -> t val union_list : t list -> t
(** {1 Query} *) (** {1 Query} *)

@ -177,50 +177,50 @@ end
module Cls : sig module Cls : sig
type t [@@deriving compare, equal, sexp] type t [@@deriving compare, equal, sexp]
val ppx : Trm.Var.strength -> t pp
val pp : t pp
val pp_raw : t pp
val pp_diff : (t * t) pp
val empty : t val empty : t
val add : Trm.t -> t -> t val add : Trm.t -> t -> t
val remove : Trm.t -> t -> t val remove : Trm.t -> t -> t
val union : t -> t -> t val union : t -> t -> t
val is_empty : t -> bool val is_empty : t -> bool
val pop : t -> (Trm.t * t) option val pop : t -> (Trm.t * t) option
val fold : t -> 's -> f:(Trm.t -> 's -> 's) -> 's
val filter : t -> f:(Trm.t -> bool) -> t val filter : t -> f:(Trm.t -> bool) -> t
val partition : t -> f:(Trm.t -> bool) -> t * t val partition : t -> f:(Trm.t -> bool) -> t * t
val fold : t -> 's -> f:(Trm.t -> 's -> 's) -> 's
val map : t -> f:(Trm.t -> Trm.t) -> t val map : t -> f:(Trm.t -> Trm.t) -> t
val to_iter : t -> Trm.t iter val to_iter : t -> Trm.t iter
val to_set : t -> Trm.Set.t val to_set : t -> Trm.Set.t
val of_set : Trm.Set.t -> t val of_set : Trm.Set.t -> t
val ppx : Trm.Var.strength -> t pp
val pp : t pp
val pp_raw : t pp
val pp_diff : (t * t) pp
end = struct end = struct
type t = Trm.t list [@@deriving compare, equal, sexp] include Trm.Set
let empty = []
let add = List.cons
let remove = List.remove ~eq:Trm.equal
let union = List.rev_append
let is_empty = List.is_empty
let pop = function [] -> None | x :: xs -> Some (x, xs)
let filter = List.filter
let partition = List.partition
let fold = List.fold
let map = List.map_endo
let to_iter = List.to_iter
let to_set = Trm.Set.of_list
let of_set s = Iter.to_list (Trm.Set.to_iter s)
let ppx x fs es =
List.pp "@ = " (Trm.ppx x) fs (List.sort_uniq ~cmp:Trm.compare es)
let to_set s = s
let of_set s = s
let ppx x fs es = pp_full ~sep:"@ = " (Trm.ppx x) fs es
let pp = ppx (fun _ -> None) let pp = ppx (fun _ -> None)
let pp_raw fs es = pp_full ~pre:"{@[" ~suf:"@]}" ~sep:",@ " Trm.pp fs es
end
let pp_raw fs es = (* Use lists / Super-expressions ==========================================*)
Trm.Set.pp_full ~pre:"{@[" ~suf:"@]}" ~sep:",@ " Trm.pp fs (to_set es)
let pp_diff = List.pp_diff ~cmp:Trm.compare "@ = " Trm.pp module Use : sig
end type t [@@deriving compare, equal, sexp]
val pp : t pp
val pp_diff : (t * t) pp
val empty : t
val add : Trm.t -> t -> t
val remove : Trm.t -> t -> t
val is_empty : t -> bool
val mem : Trm.t -> t -> bool
val iter : t -> f:(Trm.t -> unit) -> unit
val fold : t -> 's -> f:(Trm.t -> 's -> 's) -> 's
val map : t -> f:(Trm.t -> Trm.t) -> t
end =
Trm.Set
(* Conjunctions of atomic formula assumptions =============================*) (* Conjunctions of atomic formula assumptions =============================*)
@ -235,6 +235,8 @@ type t =
'rep(resentative)' of [a] *) 'rep(resentative)' of [a] *)
; cls: Cls.t Trm.Map.t ; cls: Cls.t Trm.Map.t
(** map each representative to the set of terms in its class *) (** map each representative to the set of terms in its class *)
; use: Use.t Trm.Map.t
(** map each solvable in the carrier to its immediate super-terms *)
; pnd: (Trm.t * Trm.t) list ; pnd: (Trm.t * Trm.t) list
(** pending equations to add (once invariants are reestablished) *) (** pending equations to add (once invariants are reestablished) *)
} }
@ -244,7 +246,7 @@ type t =
let pp_eq fs (e, f) = Format.fprintf fs "@[%a = %a@]" Trm.pp e Trm.pp f let pp_eq fs (e, f) = Format.fprintf fs "@[%a = %a@]" Trm.pp e Trm.pp f
let pp_raw fs {sat; rep; cls; pnd} = let pp_raw fs {sat; rep; cls; use; pnd} =
let pp_alist pp_k pp_v fs alist = let pp_alist pp_k pp_v fs alist =
let pp_assoc fs (k, v) = let pp_assoc fs (k, v) =
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_k k pp_v (k, v) Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_k k pp_v (k, v)
@ -253,14 +255,18 @@ let pp_raw fs {sat; rep; cls; pnd} =
in in
let pp_trm_v fs (k, v) = if not (Trm.equal k v) then Trm.pp fs v in let pp_trm_v fs (k, v) = if not (Trm.equal k v) then Trm.pp fs v in
let pp_cls_v fs (_, cls) = Cls.pp_raw fs cls in let pp_cls_v fs (_, cls) = Cls.pp_raw fs cls in
let pp_use_v fs (_, use) = Use.pp fs use in
let pp_pnd fs pnd = let pp_pnd fs pnd =
List.pp ~pre:";@ pnd= [@[" ";@ " ~suf:"@]]" pp_eq fs pnd List.pp ~pre:";@ pnd= [@[" ";@ " ~suf:"@]]" pp_eq fs pnd
in in
Format.fprintf fs "@[{@[<hv>sat= %b;@ rep= %a;@ cls= %a%a@]}@]" sat Format.fprintf fs
"@[{ @[<hv>sat= %b;@ rep= %a;@ cls= %a;@ use= %a%a@] }@]" sat
(pp_alist Trm.pp pp_trm_v) (pp_alist Trm.pp pp_trm_v)
(Subst.to_list rep) (Subst.to_list rep)
(pp_alist Trm.pp pp_cls_v) (pp_alist Trm.pp pp_cls_v)
(Trm.Map.to_list cls) pp_pnd pnd (Trm.Map.to_list cls)
(pp_alist Trm.pp pp_use_v)
(Trm.Map.to_list use) pp_pnd pnd
let pp_diff fs (r, s) = let pp_diff fs (r, s) =
let pp_sat fs = let pp_sat fs =
@ -275,11 +281,16 @@ let pp_diff fs (r, s) =
Trm.Map.pp_diff ~eq:Cls.equal ~pre:";@ cls= @[" ~sep:";@ " ~suf:"@]" Trm.Map.pp_diff ~eq:Cls.equal ~pre:";@ cls= @[" ~sep:";@ " ~suf:"@]"
Trm.pp Cls.pp_raw Cls.pp_diff fs (r.cls, s.cls) Trm.pp Cls.pp_raw Cls.pp_diff fs (r.cls, s.cls)
in in
let pp_use fs =
Trm.Map.pp_diff ~eq:Use.equal ~pre:";@ use= @[" ~sep:";@ " ~suf:"@]"
Trm.pp Use.pp Use.pp_diff fs (r.use, s.use)
in
let pp_pnd fs = let pp_pnd fs =
List.pp_diff ~cmp:[%compare: Trm.t * Trm.t] ~pre:";@ pnd= [@[" ";@ " List.pp_diff ~cmp:[%compare: Trm.t * Trm.t] ~pre:";@ pnd= [@[" ";@ "
~suf:"@]]" pp_eq fs (r.pnd, s.pnd) ~suf:"@]]" pp_eq fs (r.pnd, s.pnd)
in in
Format.fprintf fs "@[{ @[<hv>%t%t%t%t@] }@]" pp_sat pp_rep pp_cls pp_pnd Format.fprintf fs "@[{ @[<hv>%t%t%t%t%t }@]@]" pp_sat pp_rep pp_cls pp_use
pp_pnd
let ppx_classes x fs clss = let ppx_classes x fs clss =
List.pp "@ @<2>∧ " List.pp "@ @<2>∧ "
@ -326,11 +337,15 @@ let trms r =
let vars r = Iter.flat_map ~f:Trm.vars (trms r) let vars r = Iter.flat_map ~f:Trm.vars (trms r)
let fv r = Var.Set.of_iter (vars r) let fv r = Var.Set.of_iter (vars r)
(** test membership in carrier *) (** test if a term is in the carrier *)
let in_car r e = Subst.mem e r.rep let in_car a x = Subst.mem a x.rep
(** test if a term is a representative *)
let is_rep a x =
match Subst.find a x.rep with Some a' -> Trm.equal a a' | None -> false
(** congruent specialized to assume subterms of [a'] are [Subst.norm]alized (** congruent specialized to assume subterms of [a'] are normalized wrt [r]
wrt [r] (or canonized) *) (or canonized) *)
let semi_congruent r a' b = Trm.equal a' (Trm.map ~f:(Subst.norm r.rep) b) let semi_congruent r a' b = Trm.equal a' (Trm.map ~f:(Subst.norm r.rep) b)
(** terms are congruent if equal after normalizing subterms *) (** terms are congruent if equal after normalizing subterms *)
@ -338,128 +353,291 @@ let congruent r a b = semi_congruent r (Trm.map ~f:(Subst.norm r.rep) a) b
(* Invariant ==============================================================*) (* Invariant ==============================================================*)
let pre_invariant r = let find_check a x =
let@ () = Invariant.invariant [%here] r [%sexp_of: t] in if not (Theory.is_noninterpreted a) then a
Subst.iteri r.rep ~f:(fun ~key:trm ~data:rep -> else
(* no interpreted terms in carrier *) match Trm.Map.find a x.rep with
assert ( | Some a' -> a'
Theory.is_noninterpreted trm || fail "non-interp %a" Trm.pp trm () | None -> fail "%a not in carrier" Trm.pp a ()
) ;
(* carrier is closed under solvable subterms *) let pre_invariant x =
Iter.iter (Theory.solvable_trms trm) ~f:(fun subtrm -> let@ () = Invariant.invariant [%here] x [%sexp_of: t] in
assert ( try
in_car r subtrm Subst.iteri x.rep ~f:(fun ~key:a ~data:a' ->
|| fail "@[subterm %a@ of %a@ not in carrier of@ %a@]" Trm.pp (* only noninterpreted terms in dom of rep, except reps of
subtrm Trm.pp trm pp r () ) ) ; nontrivial classes *)
(* rep is idempotent *) assert (
assert ( Theory.is_noninterpreted a
let rep' = Subst.norm r.rep rep in || is_rep a x
Trm.equal rep rep' && not
|| fail "not idempotent: %a != %a in@ %a" Trm.pp rep Trm.pp rep' (Cls.is_empty
Subst.pp r.rep () ) ; ( Trm.Map.find a' x.cls
(* every term is in the class of its rep *) |> Option.value ~default:Cls.empty ))
assert ( || fail "interp in rep dom %a" Trm.pp a () ) ;
Trm.equal trm rep (* carrier is closed under solvable subterms *)
|| Trm.Set.mem trm Iter.iter (Theory.solvable_trms a) ~f:(fun b ->
(Cls.to_set assert (
(Trm.Map.find rep r.cls |> Option.value ~default:Cls.empty)) in_car b x
|| fail "%a not in cls of %a = {%a}@ %a" Trm.pp trm Trm.pp rep || fail "@[subterm %a@ of %a@ not in carrier@]" Trm.pp b
Cls.pp Trm.pp a () ) ) ;
(Trm.Map.find rep r.cls |> Option.value ~default:Cls.empty) (* rep is idempotent *)
pp_raw r () ) ) ; assert (
Trm.Map.iteri r.cls ~f:(fun ~key:rep ~data:cls -> let a'' = Subst.norm x.rep a' in
(* each class does not include its rep *) Trm.equal a' a''
assert (not (Trm.Set.mem rep (Cls.to_set cls))) ; || fail "not idempotent:@ @[%a@ <> %a@]@ %a" Trm.pp a' Trm.pp a''
(* representative of every element of [rep]'s class is [rep] *) Subst.pp x.rep () ) ;
Iter.iter (Cls.to_iter cls) ~f:(fun elt -> (* every term is in class of its rep *)
assert (Option.exists ~f:(Trm.equal rep) (Subst.find elt r.rep)) ) ) assert (
let a'_cls =
let invariant r = Trm.Map.find a' x.cls |> Option.value ~default:Cls.empty
let@ () = Invariant.invariant [%here] r [%sexp_of: t] in in
assert (List.is_empty r.pnd) ; Trm.equal a a'
pre_invariant r ; || Trm.Set.mem a (Cls.to_set a'_cls)
|| fail "%a not in cls of %a = {%a}" Trm.pp a Trm.pp a' Cls.pp
a'_cls () ) ;
(* each term in carrier is in use list of each of its solvable
subterms *)
Iter.iter (Theory.solvable_trms a) ~f:(fun b ->
assert (
let b_use =
Trm.Map.find b x.use |> Option.value ~default:Use.empty
in
Use.mem a b_use
|| fail "@[subterm %a@ of %a@ not in use %a@]" Trm.pp b Trm.pp
a Use.pp b_use () ) ) ) ;
Trm.Map.iteri x.cls ~f:(fun ~key:a' ~data:cls ->
(* each class does not include its rep *)
assert (
(not (Trm.Set.mem a' (Cls.to_set cls)))
|| fail "rep %a in cls %a" Trm.pp a' Cls.pp cls () ) ;
(* rep of every element in class of [a'] is [a'] *)
Iter.iter (Cls.to_iter cls) ~f:(fun e ->
assert (
let e' = find_check e x in
Trm.equal e' a'
|| fail "rep of %a = %a but should = %a, cls: %a" Trm.pp e
Trm.pp e' Trm.pp a' Cls.pp cls () ) ) ) ;
Trm.Map.iteri x.use ~f:(fun ~key:a ~data:use ->
(* dom of use are solvable terms *)
assert (Theory.is_noninterpreted a) ;
(* terms occur in each of their uses *)
Use.iter use ~f:(fun u ->
assert (
Iter.mem ~eq:Trm.equal a (Theory.solvable_trms u)
|| fail "%a does not occur in its use %a" Trm.pp a Trm.pp u ()
) ) )
with exc ->
let bt = Printexc.get_raw_backtrace () in
[%Trace.info "%a" pp_raw x] ;
Printexc.raise_with_backtrace exc bt
let invariant x =
let@ () = Invariant.invariant [%here] x [%sexp_of: t] in
assert (List.is_empty x.pnd) ;
pre_invariant x ;
assert ( assert (
(not r.sat) (not x.sat)
|| Subst.for_alli r.rep ~f:(fun ~key:a ~data:a' -> || Subst.for_alli x.rep ~f:(fun ~key:a ~data:a' ->
Subst.for_alli r.rep ~f:(fun ~key:b ~data:b' -> Subst.for_alli x.rep ~f:(fun ~key:b ~data:b' ->
Trm.compare a b >= 0 Trm.compare a b >= 0
|| (not (congruent r a b)) || (not (congruent x a b))
|| Trm.equal a' b' || Trm.equal a' b'
|| fail "not congruent %a@ %a@ in@ %a" Trm.pp a Trm.pp b pp r || fail "not congruent %a@ %a@ in@ %a" Trm.pp a Trm.pp b pp x
() ) ) ) () ) ) )
(* Representation queries =================================================*)
(** [norm0 s a = norm0 s b] if [a] and [b] are equal in [s], that is,
congruent using 0 applications of the congruence rule. *)
let norm0 s a = Subst.apply s a
(** [norm1 s a = norm1 s b] if [a] and [b] are congruent in [s] using 0 or 1
application of the congruence rule. *)
let norm1 s a =
match Theory.classify a with
| InterpAtom -> a
| NonInterpAtom -> norm0 s a
| InterpApp | UninterpApp -> (
match Trm.Map.find a s with
| Some a' -> a'
| None ->
let a_norm = Trm.map ~f:(Theory.map_solvables ~f:(norm0 s)) a in
if a_norm == a then a_norm else norm0 s a_norm )
(** rewrite a term into canonical form using rep recursively *)
let rec canon x a =
match Theory.classify a with
| InterpAtom -> a
| NonInterpAtom -> norm0 x.rep a
| InterpApp | UninterpApp -> (
match Trm.Map.find a x.rep with
| Some a' -> a'
| None ->
let a_can = Trm.map ~f:(Theory.map_solvables ~f:(canon x)) a in
if a_can == a then a_can else norm0 x.rep a_can )
(* Extending the carrier ==================================================*) (* Extending the carrier ==================================================*)
let rec norm_extend_ a x = let add_to_cls elt rep cls =
Trm.Map.update rep cls ~f:(fun elts0 ->
Cls.add elt (Option.value elts0 ~default:Cls.empty) )
let add_use_of sup sub use =
Trm.Map.update sub use ~f:(fun u ->
Use.add sup (Option.value ~default:Use.empty u) )
let add_uses_of a use =
Iter.fold ~f:(add_use_of a) (Theory.solvable_trms a) use
let add_eq v ~rep:r x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Trm.pp a pp_raw x) ~call:(fun {pf} -> pf "@ @[%a ↦ %a@]@ %a" Trm.pp v Trm.pp r pp_raw x)
~retn:(fun {pf} (_, x') -> pf "%a" pp_raw x')
@@ fun () ->
match Trm.Map.find_or_add v r x.rep with
| `Found v' ->
(* v ↦ v' already, so v' and r are congruent but not (yet) equal,
therefore add pending v' = r *)
let pnd = (v', r) :: x.pnd in
(v', {x with pnd})
| `Added rep ->
(* v ↦ r newly added, so can directly add v = r *)
let cls = add_to_cls v r x.cls in
let use = add_uses_of v x.use in
(r, {x with rep; cls; use})
(** [find_extend_ a x] is [a', x'] where [x'] is [x] extended so that
[a' = find_exn a x']. This adds [a] and all its subterms, normalizes [a]
to [a'], and uses the result to find equalities needed to reestablish
congruence closure. *)
let rec find_extend_ a x =
[%trace]
~call:(fun {pf} -> pf "@ %a@ | %a" Trm.pp a pp_raw x)
~retn:(fun {pf} (a', x') -> ~retn:(fun {pf} (a', x') ->
pf "%a@ %a" Trm.pp a' pp_diff (x, x') ; pf "%a@ %a" Trm.pp a' pp_diff (x, x') ;
assert (Trm.equal a' (Subst.norm x'.rep a)) ) assert (Trm.equal a' (find_check a x')) )
@@ fun () -> @@ fun () ->
if Theory.is_noninterpreted a then match Theory.classify a with
(* add noninterpreted terms *) | InterpAtom -> (a, x)
| NonInterpAtom -> (
match Trm.Map.find_or_add a a x.rep with match Trm.Map.find_or_add a a x.rep with
| `Found a' -> (a', x) | `Found a' -> (a', x)
| `Added rep -> | `Added rep -> (a, {x with rep}) )
(* and their subterms if newly added *) | InterpApp ->
let x = {x with rep} in if Trm.Map.mem a x.rep then (a, x)
let a', x = Trm.fold_map ~f:norm_extend_ a x in else Trm.fold_map ~f:find_extend_ a x
| UninterpApp -> (
match Trm.Map.find_or_add a a x.rep with
| `Found a' ->
(* a already has rep a' *)
(a', x) (a', x)
else | `Added rep ->
(* add subterms of interpreted terms *) (* a now its own rep *)
Trm.fold_map ~f:norm_extend_ a x let use = add_uses_of a x.use in
let x = {x with rep; use} in
let norm_extend a x = (* add subterms and norm a using (old) reps *)
let a_norm, x = Trm.fold_map ~f:find_extend_ a x in
if Trm.equal a_norm a then (* a already normalized *)
(a_norm, x)
else add_eq a_norm ~rep:a x )
let find_extend a x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Trm.pp a pp_raw x) ~call:(fun {pf} -> pf "@ %a@ %a" Trm.pp a pp_raw x)
~retn:(fun {pf} (a', x') -> ~retn:(fun {pf} (a', x') -> pf "%a@ %a" Trm.pp a' pp_diff (x, x'))
pf "%a@ %a" Trm.pp a' pp_diff (x, x') ; @@ fun () -> find_extend_ a x
pre_invariant x' ;
assert (Trm.equal a' (Subst.norm x'.rep a)) )
@@ fun () -> norm_extend_ a x
(** add a term to the carrier *) (** add a term to the carrier *)
let extend a x = let extend a x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Trm.pp a pp x) ~call:(fun {pf} -> pf "@ %a@ | %a" Trm.pp a pp x)
~retn:(fun {pf} x' -> ~retn:(fun {pf} x' ->
pf "%a" pp_diff (x, x') ; pf "%a" pp_diff (x, x') ;
pre_invariant x' ) pre_invariant x' )
@@ fun () -> snd (norm_extend a x) @@ fun () -> snd (find_extend a x)
(* Propagation ============================================================*) (* Propagation ============================================================*)
(** add a=a' to x using a' as the representative *) let move_cls_to_rep a_cls a' rep =
let propagate1 (a, a') x = Cls.fold a_cls rep ~f:(fun e rep -> Trm.Map.add ~key:e ~data:a' rep)
let find_and_move_cls noninterp ~of_:u ~to_:u' cls =
let u_cls, cls =
Trm.Map.find_and_remove u cls |> Option.value ~default:(Cls.empty, cls)
in
let u_cls = if noninterp then Cls.add u u_cls else u_cls in
let cls =
Trm.Map.update u' cls ~f:(fun u'_cls ->
Cls.union u_cls (Option.value u'_cls ~default:Cls.empty) )
in
(u_cls, cls)
let move_uses ~rem:f ~add:t use =
let f_trms = Theory.solvable_trms f |> Trm.Set.of_iter in
let t_trms = Theory.solvable_trms t |> Trm.Set.of_iter in
let f_trms, ft_trms, t_trms = Trm.Set.diff_inter_diff f_trms t_trms in
(* remove f from use of each of its subterms not shared with t *)
let use =
Trm.Set.fold f_trms use ~f:(fun e use ->
Trm.Map.change e use ~f:(function
| Some e_use ->
let e_use' = Use.remove f e_use in
if Use.is_empty e_use' then None else Some e_use'
| None -> assert false ) )
in
(* move each subterm of both f and t from a use of f to a use of t *)
let use =
Trm.Set.fold ft_trms use ~f:(fun e use ->
Trm.Map.update e use ~f:(function
| Some e_use -> Use.add t (Use.remove f e_use)
| None -> assert false ) )
in
(* add t to use of each of its subterms not shared with f *)
let use =
Trm.Set.fold t_trms use ~f:(fun e use ->
Trm.Map.update e use ~f:(fun e_use ->
Use.add t (Option.value e_use ~default:Use.empty) ) )
in
use
let update_rep noninterp ~from:r ~to_:r' x =
[%trace]
~call:(fun {pf} -> pf "@ @[%a ↦ %a@]@ %a" Trm.pp r Trm.pp r' pp_raw x)
~retn:(fun {pf} x' -> pf "%a" pp_diff (x, x'))
@@ fun () ->
let r_cls, cls = find_and_move_cls noninterp ~of_:r ~to_:r' x.cls in
let rep = move_cls_to_rep r_cls r' x.rep in
let use =
if Trm.Map.mem r rep then add_uses_of r' x.use
else move_uses ~rem:r ~add:r' x.use
in
{x with rep; cls; use}
(** add v ↦ t to x *)
let propagate1 (v, t) x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ @[%a ↦ %a@]@ %a" Trm.pp a Trm.pp a' pp_raw x) ~call:(fun {pf} ->
pf "@ @[%a ↦ %a@]@ %a" Trm.pp v Trm.pp t pp_raw x ;
(* v should be a solvable term that is a representative or absent *)
assert (Theory.is_noninterpreted v) ;
assert (
match Trm.Map.find v x.rep with
| Some v' -> Trm.equal v v'
| None -> true ) ;
(* while t may be an interpreted term and may not be in the carrier,
it should already be normalized *)
assert (Trm.equal t (norm1 x.rep t)) )
~retn:(fun {pf} -> pf "%a" pp_raw) ~retn:(fun {pf} -> pf "%a" pp_raw)
@@ fun () -> @@ fun () ->
(* pending equations need not be between terms in the carrier *) let s = Trm.Map.singleton v t in
let x = extend a (extend a' x) in let v_use = Trm.Map.find v x.use |> Option.value ~default:Use.empty in
let s = Trm.Map.singleton a a' in let x = update_rep true ~from:v ~to_:t x in
Trm.Map.fold x.rep x ~f:(fun ~key:_ ~data:b0' x -> Use.fold v_use x ~f:(fun u x ->
let b' = Subst.norm s b0' in let w = norm1 s u in
if b' == b0' then x let x = {x with pnd= (u, w) :: x.pnd} in
else if Theory.is_noninterpreted u then
let b0'_cls, cls = if in_car w x then x else {x with use= add_uses_of w x.use}
Trm.Map.find_and_remove b0' x.cls else update_rep false ~from:u ~to_:w x )
|> Option.value ~default:(Cls.empty, x.cls)
in
let b0'_cls, pnd =
if Theory.is_noninterpreted b0' then (Cls.add b0' b0'_cls, x.pnd)
else (b0'_cls, (b0', b') :: x.pnd)
in
let rep =
Cls.fold b0'_cls x.rep ~f:(fun c rep ->
Trm.Map.add ~key:c ~data:b' rep )
in
let cls =
Trm.Map.update b' cls ~f:(fun b'_cls ->
Cls.union b0'_cls (Option.value b'_cls ~default:Cls.empty) )
in
{x with rep; cls; pnd} )
let solve ~wrt ~xs d e pending = let solve ~wrt ~xs d e pending =
[%trace] [%trace]
@ -472,124 +650,65 @@ let solve ~wrt ~xs d e pending =
let rec propagate ~wrt x = let rec propagate ~wrt x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a" pp_raw x) ~call:(fun {pf} -> pf "@ %a" pp_raw x)
~retn:(fun {pf} -> pf "%a" pp_raw) ~retn:(fun {pf} x' -> pf "%a" pp_diff (x, x'))
@@ fun () -> @@ fun () ->
match x.pnd with match x.pnd with
| (a, b) :: pnd -> ( | (a, b) :: pnd -> (
let a' = Subst.norm x.rep a in let a' = Subst.norm x.rep a in
let b' = Subst.norm x.rep b in let b' = Subst.norm x.rep b in
match solve ~wrt ~xs:x.xs a' b' pnd with if Trm.equal a' b' then propagate ~wrt {x with pnd}
| {solved= Some solved; wrt; fresh; pending} -> else
let xs = Var.Set.union x.xs fresh in match solve ~wrt ~xs:x.xs a' b' pnd with
let x = {x with xs; pnd= pending} in | {solved= Some solved; wrt; fresh; pending} ->
propagate ~wrt (List.fold ~f:propagate1 solved x) let xs = Var.Set.union x.xs fresh in
| {solved= None} -> {x with sat= false; pnd= []} ) let x = {x with xs; pnd= pending} in
propagate ~wrt (List.fold ~f:propagate1 solved x)
| {solved= None} -> {x with sat= false; pnd= []} )
| [] -> x | [] -> x
(* Core operations ========================================================*) (* Core operations ========================================================*)
let empty = let empty =
let rep = Subst.empty in let rep = Subst.empty in
{xs= Var.Set.empty; sat= true; rep; cls= Trm.Map.empty; pnd= []} { xs= Var.Set.empty
; sat= true
; rep
; cls= Trm.Map.empty
; use= Trm.Map.empty
; pnd= [] }
|> check invariant |> check invariant
let unsat = {empty with sat= false} let unsat = {empty with sat= false}
(** [lookup r a] is [b'] if [a ~ b = b'] for some equation [b = b'] in rep *)
let lookup r a =
([%Trace.call fun {pf} -> pf "@ %a" Trm.pp a]
;
Iter.find_map (Subst.to_iter r.rep) ~f:(fun (b, b') ->
Option.return_if (semi_congruent r a b) b' )
|> Option.value ~default:a)
|>
[%Trace.retn fun {pf} -> pf "%a" Trm.pp]
(** rewrite a term into canonical form using rep and, for noninterpreted
terms, congruence composed with rep *)
let rec canon r a =
[%Trace.call fun {pf} -> pf "@ %a" Trm.pp a]
;
( match Theory.classify a with
| InterpAtom -> a
| NonInterpAtom -> Subst.apply r.rep a
| InterpApp -> Trm.map ~f:(canon r) a
| UninterpApp -> (
let a' = Trm.map ~f:(canon r) a in
match Theory.classify a' with
| InterpAtom | InterpApp -> a'
| NonInterpAtom -> Subst.apply r.rep a'
| UninterpApp -> lookup r a' ) )
|>
[%Trace.retn fun {pf} -> pf "%a" Trm.pp]
let canon_f r b = let canon_f r b =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Fml.pp b pp_raw r) ~call:(fun {pf} -> pf "@ %a@ | %a" Fml.pp b pp_raw r)
~retn:(fun {pf} -> pf "%a" Fml.pp) ~retn:(fun {pf} -> pf "%a" Fml.pp)
@@ fun () -> Fml.map_trms ~f:(canon r) b @@ fun () -> Fml.map_trms ~f:(canon r) b
let merge ~wrt a b x = let merge ~wrt a b x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a@ %a" Trm.pp a Trm.pp b pp x) ~call:(fun {pf} -> pf " @[%a =@ %a@] |@ %a" Trm.pp a Trm.pp b pp x)
~retn:(fun {pf} x' -> ~retn:(fun {pf} x' ->
pf "%a" pp_diff (x, x') ; pf "%a" pp_diff (x, x') ;
pre_invariant x' ) invariant x' )
@@ fun () -> @@ fun () ->
let x = {x with pnd= (a, b) :: x.pnd} in let x = {x with pnd= (a, b) :: x.pnd} in
propagate ~wrt x propagate ~wrt x
(** find an unproved equation between congruent terms *)
let find_missing r =
Iter.find_map (Subst.to_iter r.rep) ~f:(fun (a, a') ->
let a_subnorm = Trm.map ~f:(Subst.norm r.rep) a in
Iter.find_map (Subst.to_iter r.rep) ~f:(fun (b, b') ->
(* need to equate a' and b'? *)
let need_a'_eq_b' =
(* optimize: do not consider both a = b and b = a *)
Trm.compare a b < 0
(* a and b are not already equal *)
&& (not (Trm.equal a' b'))
(* a and b are congruent *)
&& semi_congruent r a_subnorm b
in
Option.return_if need_a'_eq_b' (a', b') ) )
let rec close ~wrt x =
if not x.sat then x
else
match find_missing x with
| Some (a', b') -> close ~wrt (merge ~wrt a' b' x)
| None -> x
let close ~wrt r =
[%Trace.call fun {pf} -> pf "@ %a" pp r]
;
close ~wrt r
|>
[%Trace.retn fun {pf} r' ->
pf "%a" pp_diff (r, r') ;
invariant r']
let and_eq_ ~wrt a b x = let and_eq_ ~wrt a b x =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ @[%a = %a@]@ %a" Trm.pp a Trm.pp b pp x) ~call:(fun {pf} -> pf "@ @[%a = %a@]@ | %a" Trm.pp a Trm.pp b pp x)
~retn:(fun {pf} x' -> ~retn:(fun {pf} x' ->
pf "%a" pp_diff (x, x') ; pf "%a" pp_diff (x, x') ;
invariant x' ) invariant x' )
@@ fun () -> @@ fun () ->
if not x.sat then x if not x.sat then x
else else
let x0 = x in
let a' = canon x a in let a' = canon x a in
let b' = canon x b in let b' = canon x b in
if Trm.equal a' b' then extend a' (extend b' x) let x = extend a' (extend b' x) in
else if Trm.equal a' b' then x else merge ~wrt a' b' x
let x = merge ~wrt a' b' x in
match (a, b) with
| (Var _ as v), _ when not (in_car x0 v) -> x
| _, (Var _ as v) when not (in_car x0 v) -> x
| _ -> close ~wrt x
let extract_xs r = (r.xs, {r with xs= Var.Set.empty}) let extract_xs r = (r.xs, {r with xs= Var.Set.empty})
@ -601,7 +720,7 @@ let is_empty {sat; rep} =
let is_unsat {sat} = not sat let is_unsat {sat} = not sat
let implies r b = let implies r b =
[%Trace.call fun {pf} -> pf "@ %a@ %a" Fml.pp b pp r] [%Trace.call fun {pf} -> pf "@ %a@ | %a" Fml.pp b pp r]
; ;
Fml.equal Fml.tt (canon_f r b) Fml.equal Fml.tt (canon_f r b)
|> |>
@ -611,7 +730,7 @@ let refutes r b = Fml.equal Fml.ff (canon_f r b)
let normalize x a = let normalize x a =
[%trace] [%trace]
~call:(fun {pf} -> pf "@ %a@ %a" Term.pp a pp x) ~call:(fun {pf} -> pf "@ %a@ | %a" Term.pp a pp x)
~retn:(fun {pf} -> pf "%a" Term.pp) ~retn:(fun {pf} -> pf "%a" Term.pp)
@@ fun () -> Term.map_trms ~f:(canon x) a @@ fun () -> Term.map_trms ~f:(canon x) a
@ -658,7 +777,8 @@ let apply_subst wrt s r =
; ;
( if Subst.is_empty s then r ( if Subst.is_empty s then r
else else
Trm.Map.fold r.cls {r with rep= Subst.empty; cls= Trm.Map.empty} Trm.Map.fold r.cls
{r with rep= Subst.empty; cls= Trm.Map.empty; use= Trm.Map.empty}
~f:(fun ~key:rep ~data:cls r -> ~f:(fun ~key:rep ~data:cls r ->
let rep' = Subst.apply_rec s rep in let rep' = Subst.apply_rec s rep in
Cls.fold cls r ~f:(fun trm r -> Cls.fold cls r ~f:(fun trm r ->
@ -729,7 +849,7 @@ let rec add_ wrt b r =
| Pos _ | Not _ | Or _ | Iff _ | Cond _ | Lit _ -> r | Pos _ | Not _ | Or _ | Iff _ | Cond _ | Lit _ -> r
let add us b r = let add us b r =
[%Trace.call fun {pf} -> pf "@ %a@ %a" Fml.pp b pp r] [%Trace.call fun {pf} -> pf "@ %a@ | %a" Fml.pp b pp r]
; ;
add_ us b r |> extract_xs add_ us b r |> extract_xs
|> |>
@ -763,7 +883,15 @@ let rename x sub =
Trm.Map.add ~key:a' ~data:a'_cls Trm.Map.add ~key:a' ~data:a'_cls
(if a' == a0' then cls else Trm.Map.remove a0' cls) ) (if a' == a0' then cls else Trm.Map.remove a0' cls) )
in in
if rep == x.rep && cls == x.cls then x else {x with rep; cls} let use =
Trm.Map.fold x.use x.use ~f:(fun ~key:a0' ~data:a0'_use use ->
let a' = apply_sub a0' in
let a'_use = Use.map a0'_use ~f:apply_sub in
Trm.Map.add ~key:a' ~data:a'_use
(if a' == a0' then use else Trm.Map.remove a0' use) )
in
if rep == x.rep && cls == x.cls && use == x.use then x
else {x with rep; cls; use}
let trivial vs r = let trivial vs r =
[%trace] [%trace]

@ -18,7 +18,7 @@ let%test_module _ =
* ~config: * ~config:
* (Result.get_ok * (Result.get_ok
* (Trace.parse * (Trace.parse
* "+Context-Context.canon-Context.canon_f-Context.norm")) * "+Context-Context.canon-Context.canon_f-Context.norm-Context.find_extend_"))
* () *) * () *)
[@@@warning "-32"] [@@@warning "-32"]
@ -61,22 +61,30 @@ let%test_module _ =
pp r3 ; pp r3 ;
[%expect [%expect
{| {|
%t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = g(%y_6, %v_3) %t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = g(%y_6, %t_1)
= g(%y_6, %z_7) = g(%y_6, %u_2) = g(%y_6, %v_3) = g(%y_6, %z_7)
{sat= true; { sat= true;
rep= [[%t_1 ]; rep= [[%t_1 ];
[%u_2 %t_1]; [%u_2 %t_1];
[%v_3 %t_1]; [%v_3 %t_1];
[%w_4 %t_1]; [%w_4 %t_1];
[%x_5 %t_1]; [%x_5 %t_1];
[%y_6 ]; [%y_6 ];
[%z_7 %t_1]; [%z_7 %t_1];
[g(%y_6, %v_3) %t_1]; [g(%y_6, %t_1) %t_1];
[g(%y_6, %z_7) %t_1]]; [g(%y_6, %u_2) %t_1];
cls= [[%t_1 [g(%y_6, %v_3) %t_1];
{%u_2, %v_3, %w_4, %x_5, %z_7, g(%y_6, %v_3), [g(%y_6, %z_7) %t_1]];
g(%y_6, %z_7)}]]} |}] cls= [[%t_1
{%u_2, %v_3, %w_4, %x_5, %z_7, g(%y_6, %t_1),
g(%y_6, %u_2), g(%y_6, %v_3), g(%y_6, %z_7)}]];
use= [[%t_1 g(%y_6, %t_1)];
[%u_2 g(%y_6, %u_2)];
[%v_3 g(%y_6, %v_3)];
[%y_6 g(%y_6, %t_1), g(%y_6, %u_2), g(%y_6, %v_3),
g(%y_6, %z_7)];
[%z_7 g(%y_6, %z_7)]] } |}]
let%test _ = implies_eq r3 t z let%test _ = implies_eq r3 t z
@ -87,60 +95,193 @@ let%test_module _ =
pp r15 ; pp r15 ;
[%expect [%expect
{| {|
{sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]} |}] { sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]; use= [] } |}]
let%test _ = implies_eq r15 (Term.neg b) (Term.apply (Signed 1) [|!1|]) let%test _ = implies_eq r15 (Term.neg b) (Term.apply (Signed 1) [|!1|])
let%test _ = implies_eq r15 (Term.apply (Unsigned 1) [|b|]) !1 let%test _ = implies_eq r15 (Term.apply (Unsigned 1) [|b|]) !1
let%expect_test _ = let%expect_test _ =
replay replay
{|(Solve_for_vars {|(Dnf
(() (Eq (Sized (seq (Var (id 1) (name a))) (siz (Z 8)))
((Var (id 0) (name 0)) (Var (id 0) (name 2)) (Var (id 0) (name 4)) (Concat
(Var (id 0) (name 5)) (Var (id 0) (name 7)) (Var (id 0) (name 8)) ((Sized (seq (Var (id 3) (name c))) (siz (Z 4)))
(Var (id 0) (name 9)) (Var (id 1) (name a)) (Var (id 2) (name a)) (Sized (seq (Var (id 2) (name b))) (siz (Z 4)))))))|} ;
(Var (id 3) (name a))) [%expect {| |}]
())
let%expect_test _ =
replay
{|(Union
((Var (id 1) (name a)) (Var (id 2) (name a)) (Var (id 3) (name a))
(Var (id 6) (name l)) (Var (id 7) (name a1)))
((xs ()) (sat true) ((xs ()) (sat true)
(rep (rep
(((Apply (Uninterp g.1) ()) (Apply (Uninterp g.1) ())) (((Var (id 7) (name a1)) (Var (id 2) (name a)))
((Var (id 0) (name 4)) (Var (id 0) (name 0))) ((Var (id 2) (name a)) (Var (id 2) (name a)))))
((Var (id 0) (name 2)) (Var (id 0) (name 0))) (cls (((Var (id 2) (name a)) ((Var (id 7) (name a1)))))) (use ())
((Var (id 0) (name 0)) (Var (id 0) (name 0))))) (pnd ()))
((xs ()) (sat true)
(rep
(((Var (id 7) (name a1)) (Var (id 7) (name a1)))
((Var (id 3) (name a))
(Concat
((Sized (seq (Var (id 1) (name a))) (siz (Z 8)))
(Sized (seq (Var (id 7) (name a1))) (siz (Z 8))))))
((Var (id 1) (name a)) (Var (id 1) (name a)))))
(cls (cls
(((Var (id 0) (name 0)) (((Concat
((Var (id 0) (name 2)) (Var (id 0) (name 4)) ((Sized (seq (Var (id 1) (name a))) (siz (Z 8)))
(Var (id 0) (name 2)))))) (Sized (seq (Var (id 7) (name a1))) (siz (Z 8)))))
((Var (id 3) (name a))))))
(use
(((Var (id 7) (name a1))
((Concat
((Sized (seq (Var (id 1) (name a))) (siz (Z 8)))
(Sized (seq (Var (id 7) (name a1))) (siz (Z 8)))))))
((Var (id 1) (name a))
((Concat
((Sized (seq (Var (id 1) (name a))) (siz (Z 8)))
(Sized (seq (Var (id 7) (name a1))) (siz (Z 8)))))))))
(pnd ())))|} ; (pnd ())))|} ;
[%expect {| |}] [%expect {| |}]
let%expect_test _ = let%expect_test _ =
replay replay
{|(Dnf {|(Union
(Eq0 ((Var (id 0) (name 1)) (Var (id 0) (name 4)) (Var (id 0) (name 6))
(Arith (Var (id 0) (name 8)) (Var (id 0) (name freturn))
(((((Var (id 0) (name 11)) 1) ((Var (id 0) (name 12)) 1)) 1) (Var (id 1) (name freturn)))
((((Var (id 11) (name a)) 1)) -1)))))|} ; ((xs ()) (sat true)
(rep
(((Apply (Signed 8) ((Var (id 0) (name 8))))
(Var (id 0) (name freturn)))
((Var (id 0) (name freturn)) (Var (id 0) (name freturn)))
((Var (id 0) (name 8)) (Var (id 0) (name 8)))))
(cls
(((Var (id 0) (name freturn))
((Apply (Signed 8) ((Var (id 0) (name 8))))))))
(use
(((Var (id 0) (name 8)) ((Apply (Signed 8) ((Var (id 0) (name 8))))))))
(pnd ()))
((xs ()) (sat true)
(rep
(((Apply (Uninterp .str) ()) (Var (id 0) (name 6)))
((Var (id 0) (name 8)) (Z 73))
((Var (id 0) (name 6)) (Var (id 0) (name 6)))))
(cls
(((Z 73) ((Var (id 0) (name 8))))
((Var (id 0) (name 6)) ((Apply (Uninterp .str) ())))))
(use ()) (pnd ())))|} ;
[%expect {||}]
let%expect_test _ =
replay
{|(Apply_and_elim
((Var (id 0) (name 12)) (Var (id 0) (name 16)) (Var (id 0) (name 19))
(Var (id 0) (name 22)) (Var (id 0) (name 23)) (Var (id 0) (name 26))
(Var (id 0) (name 29)) (Var (id 0) (name 33)) (Var (id 0) (name 35))
(Var (id 0) (name 39)) (Var (id 0) (name 4)) (Var (id 0) (name 40))
(Var (id 0) (name 41)) (Var (id 0) (name 47)) (Var (id 0) (name 5))
(Var (id 0) (name 52)) (Var (id 0) (name 8)) (Var (id 1) (name m))
(Var (id 2) (name a)) (Var (id 6) (name b)))
((Var (id 1) (name m)) (Var (id 2) (name a)) (Var (id 6) (name b)))
(((Var (id 6) (name b)) (Var (id 2) (name a)))
((Var (id 1) (name m))
(Apply (Signed 32)
((Apply (Signed 32) ((Arith (((((Var (id 0) (name 23)) 1)) 4)))))))))
((xs ()) (sat true)
(rep
(((Apply (Signed 32)
((Apply (Signed 32) ((Arith (((((Var (id 0) (name 23)) 1)) 4)))))))
(Var (id 1) (name m)))
((Apply (Signed 32) ((Arith (((((Var (id 0) (name 23)) 1)) 4)))))
(Apply (Signed 32) ((Arith (((((Var (id 0) (name 23)) 1)) 4))))))
((Apply (Signed 32) ((Var (id 0) (name 5))))
(Arith ((() -1) ((((Var (id 0) (name 23)) 1)) 1))))
((Var (id 6) (name b)) (Var (id 2) (name a)))
((Var (id 2) (name a)) (Var (id 2) (name a)))
((Var (id 1) (name m)) (Var (id 1) (name m)))
((Var (id 0) (name 8))
(Arith ((() -1) ((((Var (id 0) (name 23)) 1)) 1))))
((Var (id 0) (name 52)) (Var (id 0) (name 26)))
((Var (id 0) (name 5)) (Var (id 0) (name 5)))
((Var (id 0) (name 35)) (Var (id 0) (name 23)))
((Var (id 0) (name 33)) (Z 0))
((Var (id 0) (name 26)) (Var (id 0) (name 26)))
((Var (id 0) (name 23)) (Var (id 0) (name 23)))
((Var (id 0) (name 22)) (Var (id 0) (name 22)))
((Var (id 0) (name 19))
(Arith ((() -1) ((((Var (id 0) (name 23)) 1)) 1))))
((Var (id 0) (name 16))
(Arith ((() -1) ((((Var (id 0) (name 23)) 1)) 1))))))
(cls
(((Arith ((() -1) ((((Var (id 0) (name 23)) 1)) 1)))
((Var (id 0) (name 16)) (Var (id 0) (name 8))
(Var (id 0) (name 19))
(Apply (Signed 32) ((Var (id 0) (name 5))))))
((Z 0) ((Var (id 0) (name 33))))
((Var (id 2) (name a)) ((Var (id 6) (name b))))
((Var (id 1) (name m))
((Apply (Signed 32)
((Apply (Signed 32)
((Arith (((((Var (id 0) (name 23)) 1)) 4)))))))))
((Var (id 0) (name 26)) ((Var (id 0) (name 52))))
((Var (id 0) (name 23)) ((Var (id 0) (name 35))))))
(use
(((Apply (Signed 32) ((Arith (((((Var (id 0) (name 23)) 1)) 4)))))
((Apply (Signed 32)
((Apply (Signed 32)
((Arith (((((Var (id 0) (name 23)) 1)) 4)))))))))
((Var (id 0) (name 5))
((Apply (Signed 32) ((Var (id 0) (name 5))))))
((Var (id 0) (name 23))
((Arith ((() -1) ((((Var (id 0) (name 23)) 1)) 1)))
(Apply (Signed 32)
((Arith (((((Var (id 0) (name 23)) 1)) 4)))))))))
(pnd ())))|} ;
[%expect {| |}] [%expect {| |}]
let%expect_test _ = let%expect_test _ =
replay replay
{|(Normalize {|(Add () (Eq (Var (id 2) (name u)) (Var (id 5) (name x)))
((xs ()) (sat true) ((xs ()) (sat true)
(rep (rep
(((Var (id 7) (name 16)) (Z 8)) ((Var (id 0) (name 8)) (Q 3/2)) (((Apply (Uninterp g) ((Var (id 6) (name y)) (Var (id 7) (name z))))
((Var (id 0) (name 17)) (Z 3)) ((Var (id 0) (name 12)) (Z 8)) (Var (id 3) (name v)))
((Var (id 0) (name 11)) (Z 8)) ((Apply (Uninterp g) ((Var (id 6) (name y)) (Var (id 3) (name v))))
((Var (id 0) (name 10)) (Var (id 0) (name 10))) (Var (id 1) (name t)))
((Var (id 0) (name 1)) (Z 3)) ((Var (id 0) (name 0)) (Z 8)))) ((Var (id 7) (name z)) (Var (id 7) (name z)))
((Var (id 6) (name y)) (Var (id 6) (name y)))
((Var (id 5) (name x)) (Var (id 3) (name v)))
((Var (id 4) (name w)) (Var (id 3) (name v)))
((Var (id 3) (name v)) (Var (id 3) (name v)))
((Var (id 1) (name t)) (Var (id 1) (name t)))))
(cls (cls
(((Q 3/2) ((Var (id 0) (name 8)))) (((Var (id 3) (name v))
((Z 8) ((Var (id 5) (name x))
((Var (id 0) (name 12)) (Var (id 0) (name 0)) (Apply (Uninterp g)
(Var (id 7) (name 16)) (Var (id 0) (name 11)))) ((Var (id 6) (name y)) (Var (id 7) (name z))))
((Z 3) ((Var (id 0) (name 17)) (Var (id 0) (name 1)))))) (Var (id 4) (name w))))
(pnd ())) ((Var (id 1) (name t))
(Trm ((Apply (Uninterp g)
(Arith (((((Var (id 0) (name 11)) 1) ((Var (id 0) (name 12)) 1)) 1)))))|} ; ((Var (id 6) (name y)) (Var (id 3) (name v))))))))
(use
(((Var (id 7) (name z))
((Apply (Uninterp g)
((Var (id 6) (name y)) (Var (id 7) (name z))))))
((Var (id 6) (name y))
((Apply (Uninterp g)
((Var (id 6) (name y)) (Var (id 3) (name v))))
(Apply (Uninterp g)
((Var (id 6) (name y)) (Var (id 7) (name z))))))
((Var (id 3) (name v))
((Apply (Uninterp g)
((Var (id 6) (name y)) (Var (id 3) (name v))))))))
(pnd ())))|} ;
[%expect {| |}] [%expect {| |}]
(* let%expect_test _ =
* replay
* {||} ;
* [%expect {| |}] *)
end ) end )

@ -69,7 +69,7 @@ let%test_module _ =
let%expect_test _ = let%expect_test _ =
pp_raw f1 ; pp_raw f1 ;
[%expect {| {sat= false; rep= []; cls= []} |}] [%expect {| { sat= false; rep= []; cls= []; use= [] } |}]
let%test _ = is_unsat (add_eq !1 !1 f1) let%test _ = is_unsat (add_eq !1 !1 f1)
@ -79,7 +79,7 @@ let%test_module _ =
let%expect_test _ = let%expect_test _ =
pp_raw f2 ; pp_raw f2 ;
[%expect {| {sat= false; rep= []; cls= []} |}] [%expect {| { sat= false; rep= []; cls= []; use= [] } |}]
let f3 = of_eqs [(x + !0, x + !1)] let f3 = of_eqs [(x + !0, x + !1)]
@ -87,7 +87,7 @@ let%test_module _ =
let%expect_test _ = let%expect_test _ =
pp_raw f3 ; pp_raw f3 ;
[%expect {| {sat= false; rep= []; cls= []} |}] [%expect {| { sat= false; rep= []; cls= []; use= [] } |}]
let f4 = of_eqs [(x, y); (x + !0, y + !1)] let f4 = of_eqs [(x, y); (x + !0, y + !1)]
@ -97,9 +97,10 @@ let%test_module _ =
pp_raw f4 ; pp_raw f4 ;
[%expect [%expect
{| {|
{sat= false; { sat= false;
rep= [[%x_5 ]; [%y_6 %x_5]]; rep= [[%x_5 ]; [%y_6 %x_5]];
cls= [[%x_5 {%y_6}]]} |}] cls= [[%x_5 {%y_6}]];
use= [] } |}]
let t1 = of_eqs [(!1, !1)] let t1 = of_eqs [(!1, !1)]
@ -115,7 +116,7 @@ let%test_module _ =
let%expect_test _ = let%expect_test _ =
pp_raw r0 ; pp_raw r0 ;
[%expect {| {sat= true; rep= []; cls= []} |}] [%expect {| { sat= true; rep= []; cls= []; use= [] } |}]
let%expect_test _ = let%expect_test _ =
pp r0 ; pp r0 ;
@ -134,7 +135,10 @@ let%test_module _ =
%x_5 = %y_6 %x_5 = %y_6
{sat= true; rep= [[%x_5 ]; [%y_6 %x_5]]; cls= [[%x_5 {%y_6}]]} |}] { sat= true;
rep= [[%x_5 ]; [%y_6 %x_5]];
cls= [[%x_5 {%y_6}]];
use= [] } |}]
let%test _ = implies_eq r1 x y let%test _ = implies_eq r1 x y
@ -147,9 +151,10 @@ let%test_module _ =
{| {|
%x_5 = %y_6 = %z_7 = f(%x_5) %x_5 = %y_6 = %z_7 = f(%x_5)
{sat= true; { sat= true;
rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]; [f(%x_5) %x_5]]; rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]; [f(%x_5) %x_5]];
cls= [[%x_5 {%y_6, %z_7, f(%x_5)}]]} |}] cls= [[%x_5 {%y_6, %z_7, f(%x_5)}]];
use= [[%x_5 f(%x_5)]] } |}]
let%test _ = implies_eq r2 x z let%test _ = implies_eq r2 x z
let%test _ = implies_eq (inter r1 r2) x y let%test _ = implies_eq (inter r1 r2) x y
@ -170,15 +175,20 @@ let%test_module _ =
pp_raw rs ; pp_raw rs ;
[%expect [%expect
{| {|
{sat= true; { sat= true;
rep= [[%w_4 ]; [%y_6 %w_4]; [%z_7 %w_4]]; rep= [[%w_4 ]; [%y_6 %w_4]; [%z_7 %w_4]];
cls= [[%w_4 {%y_6, %z_7}]]} cls= [[%w_4 {%y_6, %z_7}]];
use= [] }
{sat= true; { sat= true;
rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]]; rep= [[%x_5 ]; [%y_6 %x_5]; [%z_7 %x_5]];
cls= [[%x_5 {%y_6, %z_7}]]} cls= [[%x_5 {%y_6, %z_7}]];
use= [] }
{sat= true; rep= [[%y_6 ]; [%z_7 %y_6]]; cls= [[%y_6 {%z_7}]]} |}] { sat= true;
rep= [[%y_6 ]; [%z_7 %y_6]];
cls= [[%y_6 {%z_7}]];
use= [] } |}]
let%test _ = let%test _ =
let r = of_eqs [(w, y); (y, z)] in let r = of_eqs [(w, y); (y, z)] in
@ -193,22 +203,30 @@ let%test_module _ =
pp_raw r3 ; pp_raw r3 ;
[%expect [%expect
{| {|
%t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = g(%y_6, %v_3) %t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = g(%y_6, %t_1)
= g(%y_6, %z_7) = g(%y_6, %u_2) = g(%y_6, %v_3) = g(%y_6, %z_7)
{sat= true; { sat= true;
rep= [[%t_1 ]; rep= [[%t_1 ];
[%u_2 %t_1]; [%u_2 %t_1];
[%v_3 %t_1]; [%v_3 %t_1];
[%w_4 %t_1]; [%w_4 %t_1];
[%x_5 %t_1]; [%x_5 %t_1];
[%y_6 ]; [%y_6 ];
[%z_7 %t_1]; [%z_7 %t_1];
[g(%y_6, %v_3) %t_1]; [g(%y_6, %t_1) %t_1];
[g(%y_6, %z_7) %t_1]]; [g(%y_6, %u_2) %t_1];
cls= [[%t_1 [g(%y_6, %v_3) %t_1];
{%u_2, %v_3, %w_4, %x_5, %z_7, g(%y_6, %v_3), [g(%y_6, %z_7) %t_1]];
g(%y_6, %z_7)}]]} |}] cls= [[%t_1
{%u_2, %v_3, %w_4, %x_5, %z_7, g(%y_6, %t_1),
g(%y_6, %u_2), g(%y_6, %v_3), g(%y_6, %z_7)}]];
use= [[%t_1 g(%y_6, %t_1)];
[%u_2 g(%y_6, %u_2)];
[%v_3 g(%y_6, %v_3)];
[%y_6 g(%y_6, %t_1), g(%y_6, %u_2), g(%y_6, %v_3),
g(%y_6, %z_7)];
[%z_7 g(%y_6, %z_7)]] } |}]
let%test _ = implies_eq r3 t z let%test _ = implies_eq r3 t z
let%test _ = implies_eq r3 x z let%test _ = implies_eq r3 x z
@ -223,14 +241,15 @@ let%test_module _ =
{| {|
(-4 + %z_7) = %y_6 (3 + %z_7) = %w_4 (8 + %z_7) = %x_5 (-4 + %z_7) = %y_6 (3 + %z_7) = %w_4 (8 + %z_7) = %x_5
{sat= true; { sat= true;
rep= [[%w_4 (3 + %z_7)]; rep= [[%w_4 (3 + %z_7)];
[%x_5 (8 + %z_7)]; [%x_5 (8 + %z_7)];
[%y_6 (-4 + %z_7)]; [%y_6 (-4 + %z_7)];
[%z_7 ]]; [%z_7 ]];
cls= [[(-4 + %z_7) {%y_6}]; cls= [[(-4 + %z_7) {%y_6}];
[(3 + %z_7) {%w_4}]; [(3 + %z_7) {%w_4}];
[(8 + %z_7) {%x_5}]]} |}] [(8 + %z_7) {%x_5}]];
use= [[%z_7 (-4 + %z_7), (3 + %z_7), (8 + %z_7)]] } |}]
let%test _ = implies_eq r4 x (w + !5) let%test _ = implies_eq r4 x (w + !5)
let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5)) let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5))
@ -248,9 +267,10 @@ let%test_module _ =
{| {|
1 = %x_5 = %y_6 1 = %x_5 = %y_6
{sat= true; { sat= true;
rep= [[%x_5 1]; [%y_6 1]]; rep= [[%x_5 1]; [%y_6 1]];
cls= [[1 {%x_5, %y_6}]]} |}] cls= [[1 {%x_5, %y_6}]];
use= [] } |}]
let%test _ = implies_eq r6 x y let%test _ = implies_eq r6 x y
@ -263,13 +283,14 @@ let%test_module _ =
{| {|
%v_3 = %x_5 %w_4 = %y_6 = %z_7 %v_3 = %x_5 %w_4 = %y_6 = %z_7
{sat= true; { sat= true;
rep= [[%v_3 ]; rep= [[%v_3 ];
[%w_4 ]; [%w_4 ];
[%x_5 %v_3]; [%x_5 %v_3];
[%y_6 %w_4]; [%y_6 %w_4];
[%z_7 %w_4]]; [%z_7 %w_4]];
cls= [[%v_3 {%x_5}]; [%w_4 {%y_6, %z_7}]]} |}] cls= [[%v_3 {%x_5}]; [%w_4 {%y_6, %z_7}]];
use= [] } |}]
let r7' = add_eq x z r7 let r7' = add_eq x z r7
@ -280,13 +301,14 @@ let%test_module _ =
{| {|
%v_3 = %w_4 = %x_5 = %y_6 = %z_7 %v_3 = %w_4 = %x_5 = %y_6 = %z_7
{sat= true; { sat= true;
rep= [[%v_3 ]; rep= [[%v_3 ];
[%w_4 %v_3]; [%w_4 %v_3];
[%x_5 %v_3]; [%x_5 %v_3];
[%y_6 %v_3]; [%y_6 %v_3];
[%z_7 %v_3]]; [%z_7 %v_3]];
cls= [[%v_3 {%w_4, %x_5, %y_6, %z_7}]]} |}] cls= [[%v_3 {%w_4, %x_5, %y_6, %z_7}]];
use= [] } |}]
let%test _ = normalize r7' w |> Term.equal v let%test _ = normalize r7' w |> Term.equal v
@ -305,9 +327,10 @@ let%test_module _ =
{| {|
14 = %y_6 13×%z_7 = %x_5 14 = %y_6 13×%z_7 = %x_5
{sat= true; { sat= true;
rep= [[%x_5 13×%z_7]; [%y_6 14]; [%z_7 ]]; rep= [[%x_5 13×%z_7]; [%y_6 14]; [%z_7 ]];
cls= [[14 {%y_6}]; [13×%z_7 {%x_5}]]} |}] cls= [[14 {%y_6}]; [13×%z_7 {%x_5}]];
use= [[%z_7 13×%z_7]] } |}]
let%test _ = implies_eq r8 y !14 let%test _ = implies_eq r8 y !14
@ -318,13 +341,15 @@ let%test_module _ =
pp_raw r9 ; pp_raw r9 ;
[%expect [%expect
{| {|
{sat= true; { sat= true;
rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]]; rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]];
cls= [[(-16 + %z_7) {%x_5}]]} cls= [[(-16 + %z_7) {%x_5}]];
use= [[%z_7 (-16 + %z_7)]] }
{sat= true;
rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]]; { sat= true;
cls= [[(-16 + %z_7) {%x_5}]]} |}] rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]];
cls= [[(-16 + %z_7) {%x_5}]];
use= [[%z_7 (-16 + %z_7)]] } |}]
let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8)) let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
@ -339,20 +364,22 @@ let%test_module _ =
Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ; Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ;
[%expect [%expect
{| {|
{sat= true; { sat= true;
rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]]; rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]];
cls= [[(-16 + %z_7) {%x_5}]]} cls= [[(-16 + %z_7) {%x_5}]];
use= [[%z_7 (-16 + %z_7)]] }
{sat= true; { sat= true;
rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]]; rep= [[%x_5 (-16 + %z_7)]; [%z_7 ]];
cls= [[(-16 + %z_7) {%x_5}]]} cls= [[(-16 + %z_7) {%x_5}]];
use= [[%z_7 (-16 + %z_7)]] }
(-8 + -1×%x_5 + %z_7) (-8 + -1×%x_5 + %z_7)
8 8
(8 + %x_5 + -1×%z_7) (8 + %x_5 + -1×%z_7)
-8 |}] -8 |}]
let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8)) let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
@ -381,7 +408,11 @@ let%test_module _ =
let%expect_test _ = let%expect_test _ =
pp_raw r13 ; pp_raw r13 ;
[%expect [%expect
{| {sat= true; rep= [[%y_6 ]; [%z_7 %y_6]]; cls= [[%y_6 {%z_7}]]} |}] {|
{ sat= true;
rep= [[%y_6 ]; [%z_7 %y_6]];
cls= [[%y_6 {%z_7}]];
use= [] } |}]
let%test _ = not (is_unsat r13) (* incomplete *) let%test _ = not (is_unsat r13) (* incomplete *)
@ -392,7 +423,7 @@ let%test_module _ =
pp_raw r14 ; pp_raw r14 ;
[%expect [%expect
{| {|
{sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]} |}] { sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]; use= [] } |}]
let%test _ = implies_eq r14 a (Formula.inject Formula.tt) let%test _ = implies_eq r14 a (Formula.inject Formula.tt)
@ -403,7 +434,7 @@ let%test_module _ =
pp_raw r14 ; pp_raw r14 ;
[%expect [%expect
{| {|
{sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]} |}] { sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]; use= [] } |}]
let%test _ = implies_eq r14 a (Formula.inject Formula.tt) let%test _ = implies_eq r14 a (Formula.inject Formula.tt)
(* incomplete *) (* incomplete *)
@ -416,7 +447,7 @@ let%test_module _ =
pp_raw r15 ; pp_raw r15 ;
[%expect [%expect
{| {|
{sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]} |}] { sat= true; rep= [[%x_5 1]]; cls= [[1 {%x_5}]]; use= [] } |}]
(* f(x1)1=x+1, f(y)+1=y1, y+1=x ⊢ false *) (* f(x1)1=x+1, f(y)+1=y1, y+1=x ⊢ false *)
let r16 = let r16 =
@ -426,14 +457,16 @@ let%test_module _ =
pp_raw r16 ; pp_raw r16 ;
[%expect [%expect
{| {|
{sat= false; { sat= false;
rep= [[%x_5 (1 + %y_6)]; rep= [[%x_5 (1 + %y_6)];
[%y_6 ]; [%y_6 ];
[f(%y_6) (-2 + %y_6)]; [f(%y_6) (-2 + %y_6)];
[f((-1 + %x_5)) (3 + %y_6)]]; [f((-1 + %x_5)) (3 + %y_6)]];
cls= [[(-2 + %y_6) {f(%y_6)}]; cls= [[(-2 + %y_6) {f(%y_6)}];
[(1 + %y_6) {%x_5}]; [(1 + %y_6) {%x_5}];
[(3 + %y_6) {f((-1 + %x_5))}]]} |}] [(3 + %y_6) {f((-1 + %x_5))}]];
use= [[%x_5 f((-1 + %x_5))];
[%y_6 (-2 + %y_6), (1 + %y_6), (3 + %y_6), f(%y_6)]] } |}]
let%test _ = is_unsat r16 let%test _ = is_unsat r16
@ -444,12 +477,13 @@ let%test_module _ =
pp_raw r17 ; pp_raw r17 ;
[%expect [%expect
{| {|
{sat= false; { sat= false;
rep= [[%x_5 ]; rep= [[%x_5 ];
[%y_6 %x_5]; [%y_6 %x_5];
[f(%x_5) %x_5]; [f(%x_5) %x_5];
[f(%y_6) (-1 + %x_5)]]; [f(%y_6) (-1 + %x_5)]];
cls= [[%x_5 {%y_6, f(%x_5)}]; [(-1 + %x_5) {f(%y_6)}]]} |}] cls= [[%x_5 {%y_6, f(%x_5)}]; [(-1 + %x_5) {f(%y_6)}]];
use= [[%x_5 (-1 + %x_5), f(%x_5)]; [%y_6 f(%y_6)]] } |}]
let%test _ = is_unsat r17 let%test _ = is_unsat r17
@ -459,13 +493,14 @@ let%test_module _ =
pp r18 ; pp r18 ;
[%expect [%expect
{| {|
{sat= true; { sat= true;
rep= [[%x_5 ]; rep= [[%x_5 ];
[%y_6 ]; [%y_6 ];
[f(%x_5) %x_5]; [f(%x_5) %x_5];
[f(%y_6) (-1 + %y_6)]]; [f(%y_6) (-1 + %y_6)]];
cls= [[%x_5 {f(%x_5)}]; [(-1 + %y_6) {f(%y_6)}]]} cls= [[%x_5 {f(%x_5)}]; [(-1 + %y_6) {f(%y_6)}]];
use= [[%x_5 f(%x_5)]; [%y_6 (-1 + %y_6), f(%y_6)]] }
%x_5 = f(%x_5) (-1 + %y_6) = f(%y_6) |}] %x_5 = f(%x_5) (-1 + %y_6) = f(%y_6) |}]
let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)] let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)]
@ -474,9 +509,10 @@ let%test_module _ =
pp_raw r19 ; pp_raw r19 ;
[%expect [%expect
{| {|
{sat= true; { sat= true;
rep= [[%x_5 0]; [%y_6 0]; [%z_7 0]]; rep= [[%x_5 0]; [%y_6 0]; [%z_7 0]];
cls= [[0 {%x_5, %y_6, %z_7}]]} |}] cls= [[0 {%x_5, %y_6, %z_7}]];
use= [] } |}]
let%test _ = implies_eq r19 x !0 let%test _ = implies_eq r19 x !0
let%test _ = implies_eq r19 y !0 let%test _ = implies_eq r19 y !0

@ -79,9 +79,9 @@ let%test_module _ =
[%expect [%expect
{| {|
%x_7 . emp %x_7 . emp
0 = %x_7 emp 0 = %x_7 emp
0 = %x_7 emp |}] 0 = %x_7 emp |}]
let%expect_test _ = let%expect_test _ =
@ -99,7 +99,7 @@ let%test_module _ =
[%expect [%expect
{| {|
( ( 0 = %x_7 emp) ( ( ( 1 = %y_8 emp) ( emp) )) ) ( ( 0 = %x_7 emp) ( ( ( 1 = %y_8 emp) ( emp) )) )
( ( %x_7, %x_8 . 2 = %x_8 (2 = %x_8) emp) ( ( %x_7, %x_8 . 2 = %x_8 (2 = %x_8) emp)
( %x_7 . 1 = %x_7 = %y_8 ((1 = %x_7) (1 = %y_8)) emp) ( %x_7 . 1 = %x_7 = %y_8 ((1 = %x_7) (1 = %y_8)) emp)
( 0 = %x_7 (0 = %x_7) emp) ( 0 = %x_7 (0 = %x_7) emp)
@ -122,7 +122,7 @@ let%test_module _ =
[%expect [%expect
{| {|
( ( emp) ( ( ( 1 = %y_8 emp) ( emp) )) ) ( ( emp) ( ( ( 1 = %y_8 emp) ( emp) )) )
( ( %x_7, %x_9, %x_10 . 2 = %x_10 (2 = %x_10) emp) ( ( %x_7, %x_9, %x_10 . 2 = %x_10 (2 = %x_10) emp)
( %x_7, %x_9 . ( %x_7, %x_9 .
1 = %y_8 = %x_9 ((1 = %y_8) (1 = %x_9)) 1 = %y_8 = %x_9 ((1 = %y_8) (1 = %x_9))
@ -147,7 +147,7 @@ let%test_module _ =
[%expect [%expect
{| {|
( ( emp) ( ( ( 1 = %y_8 emp) ( emp) )) ) ( ( emp) ( ( ( 1 = %y_8 emp) ( emp) )) )
( ( emp) ( 1 = %y_8 emp) ( emp) ) |}] ( ( emp) ( 1 = %y_8 emp) ( emp) ) |}]
let%expect_test _ = let%expect_test _ =
@ -159,9 +159,9 @@ let%test_module _ =
[%expect [%expect
{| {|
%x_7 . %x_7 = f(%x_7) (-1 + %y_8) = f(%y_8) emp %x_7 . %x_7 = f(%x_7) (-1 + %y_8) = f(%y_8) emp
(-1 + %y_8) = f(%y_8) ((1 + f(%y_8)) = %y_8) emp (-1 + %y_8) = f(%y_8) ((1 + f(%y_8)) = %y_8) emp
(-1 + %y_8) = f(%y_8) emp |}] (-1 + %y_8) = f(%y_8) emp |}]
let%expect_test _ = let%expect_test _ =
@ -222,14 +222,14 @@ let%test_module _ =
((%b_2 = %z_9) (%c_3 = %m_6)) ((%b_2 = %z_9) (%c_3 = %m_6))
emp) emp)
) )
%b_2 . %b_2 .
tt tt tt tt
%x_7 -[ %b_2, %c_3 )-> 8,0 %x_7 -[ %b_2, %c_3 )-> 8,0
* ( ( %b_2 = %z_9 (%b_2 = %z_9) emp) * ( ( %b_2 = %z_9 (%b_2 = %z_9) emp)
( %b_2 = %y_8 (%b_2 = %y_8) emp) ( %b_2 = %y_8 (%b_2 = %y_8) emp)
) )
%b_2 . %b_2 .
%x_7 -[ %b_2, %c_3 )-> 8,0 %x_7 -[ %b_2, %c_3 )-> 8,0
* ( ( %b_2 = %z_9 emp) ( %b_2 = %y_8 emp) ) |}] * ( ( %b_2 = %z_9 emp) ( %b_2 = %y_8 emp) ) |}]

Loading…
Cancel
Save