Reviewed By: ngorogiannis

Differential Revision: D8185997

fbshipit-source-id: 7e48131
master
Mehdi Bouaziz 7 years ago committed by Facebook Github Bot
parent 7409e33ed2
commit fd93d907e8

@ -0,0 +1,244 @@
(*
* Copyright (c) 2018-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! Core
(*
Invariants:
- elements of Concat are not empty (nor singletons)
- arg of Rev is not empty, nor singleton, nor Rev
- arg of Snoc is not empty
...ensure that:
- an empty list is always represented by Empty,
- a singleton is always represented by Cons(_, Empty)
- the memory footprint is in Theta(length)
Potential constructors to add later:
- OfArray of 'a Array.t
- Flatten of 'a t t
*)
type +'a t = Empty | Cons of 'a * 'a t | Snoc of 'a t * 'a | Concat of 'a t * 'a t | Rev of 'a t
let () =
(* This is a pretty simple test to check that the runtime representation of OCaml lists is compatible with our lists and hence using [Obj.magic] for [of_list] is legit *)
let exception RuntimeValue in
assert (
Polymorphic_compare.(Caml.Obj.repr [RuntimeValue] = Caml.Obj.repr (Cons (RuntimeValue, Empty)))
)
(* Constructors *)
let of_list = Caml.Obj.magic
let empty = Empty
let singleton e = Cons (e, Empty)
let cons e l = Cons (e, l)
let snoc l e = match l with Empty -> singleton e | _ -> Snoc (l, e)
let append l1 l2 =
match (l1, l2) with
| Empty, l | l, Empty ->
l
| Cons (e, Empty), l2 ->
Cons (e, l2)
| l1, Cons (e, Empty) ->
Snoc (l1, e)
| l1, l2 ->
Concat (l1, l2)
let rev l = match l with Empty | Cons (_, Empty) -> l | Rev l -> l | l -> Rev l
(* Deconstructors *)
let is_empty = function Empty -> true | _ -> false
let is_singleton = function Cons (e, Empty) -> Some e | _ -> None
let is_singleton_or_more = function
| Empty ->
IContainer.Empty
| Cons (e, Empty) ->
IContainer.Singleton e
| _ ->
IContainer.More
let rec hd_tl_exn : 'a t -> 'a * 'a t = function
| Empty ->
raise Caml.Not_found
| Cons (hd, tl) ->
(hd, tl)
| Snoc (front, last) ->
let hd, tl = hd_tl_exn front in
(hd, snoc tl last)
| Concat (l1, l2) ->
let hd, tl1 = hd_tl_exn l1 in
(hd, append tl1 l2)
| Rev l ->
let rev_tl, hd = front_last_exn l in
(hd, rev rev_tl)
and front_last_exn : 'a t -> 'a t * 'a = function
| Empty ->
raise Caml.Not_found
| Cons (hd, tl) ->
let front, last = front_last_exn tl in
(cons hd front, last)
| Snoc (front, last) ->
(front, last)
| Concat (l1, l2) ->
let front2, last = front_last_exn l2 in
(append l1 front2, last)
| Rev l ->
let last, rev_front = hd_tl_exn l in
(rev rev_front, last)
let rec hd_exn : 'a t -> 'a = function
| Empty ->
raise Caml.Not_found
| Cons (hd, _) ->
hd
| Snoc (front, _) | Concat (front, _) ->
hd_exn front
| Rev l ->
last_exn l
and last_exn : 'a t -> 'a = function
| Empty ->
raise Caml.Not_found
| Snoc (_, last) ->
last
| Cons (_, tl) | Concat (_, tl) ->
last_exn tl
| Rev l ->
hd_exn l
let hd = function Empty -> None | l -> Some (hd_exn l)
let last = function Empty -> None | l -> Some (last_exn l)
(* Traversing *)
let rec fold_left_tailrec l rem ~init ~f =
match l with
| Empty -> (
match rem with Empty -> init | rem -> (fold_left_tailrec [@tailcall]) rem Empty ~init ~f )
| Cons (hd, tl) ->
let init = f init hd in
(fold_left_tailrec [@tailcall]) tl rem ~init ~f
| Snoc (front, last) ->
(fold_left_tailrec [@tailcall]) front (cons last rem) ~init ~f
| Concat (l1, l2) ->
(fold_left_tailrec [@tailcall]) l1 (append l2 rem) ~init ~f
| Rev l ->
(fold_right_tailrec [@tailcall]) l (rev rem) ~init ~f
and fold_right_tailrec l rem ~init ~f =
match l with
| Empty -> (
match rem with Empty -> init | rem -> (fold_right_tailrec [@tailcall]) rem Empty ~init ~f )
| Cons (hd, tl) ->
(fold_right_tailrec [@tailcall]) tl (snoc rem hd) ~init ~f
| Snoc (front, last) ->
let init = f init last in
(fold_right_tailrec [@tailcall]) front rem ~init ~f
| Concat (l1, l2) ->
(fold_right_tailrec [@tailcall]) l2 (append rem l1) ~init ~f
| Rev l ->
(fold_left_tailrec [@tailcall]) l (rev rem) ~init ~f
let max_recursion = 1000
let rec fold_left_count l depth ~init ~f =
match l with
| Empty ->
init
| Cons (hd, tl) ->
let init = f init hd in
(fold_left_count [@tailcall]) tl depth ~init ~f
| Snoc (front, last) ->
let init =
if depth < max_recursion then fold_left_count front (depth + 1) ~init ~f
else fold_left_tailrec l Empty ~init ~f
in
f init last
| Concat (l1, l2) ->
if depth < max_recursion then
let init = fold_left_count l1 (depth + 1) ~init ~f in
(fold_left_count [@tailcall]) l2 depth ~init ~f
else fold_left_tailrec l1 l2 ~init ~f
| Rev l ->
(fold_right_count [@tailcall]) l depth ~init ~f
and fold_right_count l depth ~init ~f =
match l with
| Empty ->
init
| Cons (hd, tl) ->
let init =
if depth < max_recursion then fold_right_count tl (depth + 1) ~init ~f
else fold_right_tailrec tl Empty ~init ~f
in
f init hd
| Snoc (front, last) ->
let init = f init last in
(fold_right_count [@tailcall]) front depth ~init ~f
| Concat (l1, l2) ->
if depth < max_recursion then
let init = fold_right_count l2 (depth + 1) ~init ~f in
(fold_right_count [@tailcall]) l1 depth ~init ~f
else fold_right_tailrec l2 l1 ~init ~f
| Rev l ->
(fold_left_count [@tailcall]) l depth ~init ~f
let fold_left l ~init ~f = fold_left_count l 0 ~init ~f
let fold_right l ~init ~f = fold_right_count l 0 ~init ~f
let rec fold_unordered_tailrec l rem ~init ~f =
match l with
| Empty -> (
match rem with Empty -> init | rem -> (fold_unordered_tailrec [@tailcall]) rem Empty ~init ~f )
| Cons (e, l) | Snoc (l, e) ->
let init = f init e in
(fold_unordered_tailrec [@tailcall]) l rem ~init ~f
| Concat (l1, l2) ->
(fold_unordered_tailrec [@tailcall]) l1 (append l2 rem) ~init ~f
| Rev l ->
(fold_unordered_tailrec [@tailcall]) l rem ~init ~f
let rec fold_unordered_count l depth ~init ~f =
match l with
| Empty ->
init
| Cons (e, l) | Snoc (l, e) ->
let init = f init e in
(fold_unordered_count [@tailcall]) l depth ~init ~f
| Concat (l1, l2) ->
if depth < max_recursion then
let init = fold_unordered_count l1 (depth + 1) ~init ~f in
(fold_unordered_count [@tailcall]) l2 depth ~init ~f
else fold_unordered_tailrec l1 l2 ~init ~f
| Rev l ->
(fold_unordered_count [@tailcall]) l depth ~init ~f
let fold_unordered l ~init ~f = fold_unordered_count l 0 ~init ~f

@ -0,0 +1,67 @@
(*
* Copyright (c) 2018-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
(*
Lists with O(1) append and rev.
*)
include sig
(* ocaml ignores the warning suppression at toplevel, hence the [include struct ... end] trick *)
[@@@warning "-60"]
type +'a t
(* O(1) time and O(1) allocation *)
val empty : 'a t
val singleton : 'a -> 'a t
val of_list : 'a list -> 'a t
val cons : 'a -> 'a t -> 'a t
val snoc : 'a t -> 'a -> 'a t
val append : 'a t -> 'a t -> 'a t
val rev : 'a t -> 'a t
val is_empty : 'a t -> bool
val is_singleton : 'a t -> 'a option
val is_singleton_or_more : 'a t -> 'a IContainer.singleton_or_more
(* O(1) best to O(N) worst time and allocation. Do not use in a loop, use [fold] instead. *)
val hd_tl_exn : 'a t -> 'a * 'a t
val front_last_exn : 'a t -> 'a t * 'a
(* O(1) best to O(N) worst time, no allocation *)
val hd_exn : 'a t -> 'a
val last_exn : 'a t -> 'a
val hd : 'a t -> 'a option
val last : 'a t -> 'a option
(* Theta(N) time, 0 best to Theta(N) worst allocation *)
val fold_left : ('a t, 'a, 'accum) Container.fold
val fold_right : ('a t, 'a, 'accum) Container.fold
val fold_unordered : ('a t, 'a, 'accum) Container.fold
(** Always better than [fold_left] when you do not care about the order. *)
end
Loading…
Cancel
Save