Summary:
This resolves a few instances of false negatives; typically:
```
if (x == y) {
// HERE
*x = 10;
*y = 44;
// THERE
}
```
We used to get
```
HERE: &x->v * &y ->v' * v == v'
THERE: &x->v * &y ->v' * v == v' * v |-> 10 * v' |-> 44
```
The state at THERE was thus inconsistent and detected as such (v` and
`v'` are allocated separately in the heap hence cannot be equal).
Now we normalize the state more eagerly and so we get:
```
HERE: &x->v * &y->v
THERE: &x->v * &y->v * v |-> 44
```
Reviewed By: skcho
Differential Revision: D26488377
fbshipit-source-id: 568e685f0
Summary:
This is all dead code but I had to do this to try something else and I
don't want to have to do that again :)
Reviewed By: skcho
Differential Revision: D26022111
fbshipit-source-id: 622ca10b9
Summary:
This one is observed to be more memory efficient. Intuitively, maps need
to be re-allocated more often than lists for balancing. In pulse, we'll
often only ever add new values, in increasing order (when they are fresh
variables created as we symbolically execute the program), which pushes
maps into their worst-case allocation pattern. At least I suspect that's
what happens. With lists, this case is handled much better as lists are
not re-allocated when adding elements.
This is somewhat confirmed by benchmarking and observing GC stats.
Reviewed By: skcho
Differential Revision: D22140908
fbshipit-source-id: 29815112f
Summary:
Add a new data structure and use it for the map of memory accesses to
limit the number of destinations reachable from a given address. This
avoids remembering details of each index in large arrays, or even each
field in large structs.
Reviewed By: skcho
Differential Revision: D18246091
fbshipit-source-id: 5d3974d9c