Summary:
This information is needed to mediate between index-based
operations (such as on records) and offset-based operations (such as
load/store). Since it is fragile to recompute, the approach here is to
query llvm during translation and store the result.
Reviewed By: jvillard
Differential Revision: D24772954
fbshipit-source-id: ad22c3ecf
Summary:
If these failures are observed in real code of interest, they will
need to be resolved, so they are `todo` rather than an internal
`fail`ure.
Reviewed By: jvillard
Differential Revision: D24746222
fbshipit-source-id: 6b924be58
Summary:
While vector types can be translated, vector operations are not
currently handled. Translating type can lead to later failures (such
as bogus Convert expressions) that are not clearly identifiable as
originating from vector types. So fail eagerly when a vector type is
seen. Note that the only vectors that the frontend sees are due to
incompleteness of the LLVM vectorizer pass.
Reviewed By: jvillard
Differential Revision: D24746224
fbshipit-source-id: 30c0715eb
Summary: Do not fail when resolving the realpath of a debug info path.
Reviewed By: jvillard
Differential Revision: D24746237
fbshipit-source-id: b9dc35176
Summary:
Applicative command line argument interpretation fail: using map
instead of compose meant that the type of the ignored arg was the
action function.
Reviewed By: jvillard
Differential Revision: D24746226
fbshipit-source-id: f1dd67067
Summary:
Change Arith.map to not descend through non-interpreted arithmetic
operators. For example, in `2×(x × y) + 3×z + 4`, `map ~f` will apply
`f` to the subterms `x × y` and `z`, but not `x` or `y`.
The logical notion of "subterm" that is needed by the solver does not
coincide with the representation. This is essentially due to not
"flattening" or "purifying" terms. That is, traditionally `x × y`
would not be permitted as an indeterminate of a polynomial. Instead, a
new variable would need to be introduced: `v = x × y` and then the
polynomial would be expressed as `2×v + 3×z + 4`. Taking maximal
non-interpreted subterms as the definition of "subterm" results in
subterms in the non-flattened representation that are equivalent to
those that would result from flattening the representation.
Reviewed By: jvillard
Differential Revision: D24746235
fbshipit-source-id: d8fcf46a1
Summary:
The implementation of Arithmetic relies on the partial projection from
terms to polynomials. This diff enables it to also embed polynomials
back into terms.
Reviewed By: jvillard
Differential Revision: D24746223
fbshipit-source-id: b6010e7b7
Summary:
Add a distinction between interpreted and uninterpreted arithmetic
terms, and use it in Context.classify. This enables correctly
classifying non-linear terms such as `x × y` as uninterpreted.
Reviewed By: ngorogiannis
Differential Revision: D24746228
fbshipit-source-id: 1a4b0e3bd
Summary:
It was possible for the scope of existentials to be violated. In
particular, before this diff the order of re-quantifying the
existentials and conjoining the non-eliminated equations from the
solution of solving for existentials was wrong.
Reviewed By: ngorogiannis
Differential Revision: D24746231
fbshipit-source-id: d96cc60a6
Summary:
In the process of computing `Context.solve`, fresh variables can be
generated. Not all of these end up in the final solution
substitution. Currently all of the freshly generated variables are
returned to the client, which leads to extraneous existentials. This
diff trims the returned fresh variables to only those that appear in
the final solution.
Reviewed By: ngorogiannis
Differential Revision: D24746241
fbshipit-source-id: 59a2f221b
Summary:
Since floats of any width are interpreted the same (as exact rationals
where possible and uninterpreted constants otherwise), this does not
introduce additional infidelity.
Reviewed By: da319
Differential Revision: D24746225
fbshipit-source-id: bc8e7bdb9
Summary:
Since non-integral address spaces are not currently supported anyhow,
this does not introduce additional infidelity.
Reviewed By: da319
Differential Revision: D24746234
fbshipit-source-id: 1f6887a78
Summary: Just to make the source and destination types of the conversion more clear.
Reviewed By: da319
Differential Revision: D24746239
fbshipit-source-id: 592c7d0f1
Summary:
Since Context treats only equality directly, formulas involving other
literals can normalize to false when the context is not unsat. This
diff changes Sh.star to check this case, and return the canonical
false symbolic heap.
Reviewed By: da319
Differential Revision: D24746227
fbshipit-source-id: 50a51b8a6
Summary:
- Treat missing baseline files as if empty
- Only filter unchanged results if a baseline file is given
- Minor optimization
- Sort multiple statuses
- Fix total computation
- List tests with failing statues first
- Do not use `Format.formatter_of_out_channel` since it sometimes does
not work for some unknown reason, e.g. when the output should have
only one line, none are emitted.
Reviewed By: da319
Differential Revision: D24746236
fbshipit-source-id: f4ead1531
Summary:
When exceptions are used due to the lack of goto, use `raise_notrace`
instead of `raise` to avoid the overhead of populating the backtrace.
Reviewed By: ngorogiannis
Differential Revision: D24630525
fbshipit-source-id: c5051d9c4
Summary:
Adding quotes is needed only to avoid clashes between LLVM integer
literals and anonmous value names.
Reviewed By: ngorogiannis
Differential Revision: D24630527
fbshipit-source-id: 97339740c
Summary:
The implementation in Context, in terms of Fol.Term and Fol.Formula,
can now be used instead of Ses.Equality, implemented using
Ses.Term. The Ses modules can now be removed.
Reviewed By: jvillard
Differential Revision: D24532362
fbshipit-source-id: cee9791b7
Summary:
Adapt the solver implementation from Ses.Equality to Context, and use
the interface of Fol.Context.
Reviewed By: jvillard
Differential Revision: D24532348
fbshipit-source-id: 2c6d41669
Summary:
Apply normalization to conditional terms similar to conditional
formulas: evaluate terms with literal conditions, equal branches, and
ensure the condition is not negative.
Reviewed By: jvillard
Differential Revision: D24532344
fbshipit-source-id: 7818dc496