Module Absint__AbstractDomain
Abstract domains and domain combinators
module Types : sig ... end
module type NoJoin = sig ... end
module type S = sig ... end
module type WithBottom = sig ... end
A domain with an explicit bottom value
module type WithTop = sig ... end
A domain with an explicit top value
module BottomLifted : functor (Domain : S) -> sig ... end
Create a domain with Bottom element from a pre-domain
module BottomLiftedUtils : sig ... end
module TopLifted : functor (Domain : S) -> WithTop with type t = Domain.t Types.top_lifted
Create a domain with Top element from a pre-domain
module TopLiftedUtils : sig ... end
module Pair : functor (Domain1 : S) -> functor (Domain2 : S) -> S with type t = Domain1.t * Domain2.t
Cartesian product of two domains.
module Flat : functor (V : IStdlib.PrettyPrintable.PrintableEquatableType) -> sig ... end
Flat abstract domain: Bottom, Top, and non-comparable elements in between
include sig ... end
module Stacked : functor (Below : S) -> functor (Val : S) -> functor (Above : S) -> S with type t = (Below.t, Val.t, Above.t) Types.below_above
Stacked abstract domain: tagged union of
Below
,Val
, andAbove
domains where all elements ofBelow
are strictly smaller than all elements ofVal
which are strictly smaller than all elements ofAbove
module StackedUtils : sig ... end
module MinReprSet : functor (Element : IStdlib.PrettyPrintable.PrintableOrderedType) -> sig ... end
Abstracts a set of
Element
s by keeping its smallest representative only. The widening is terminating only if the order fulfills the descending chain condition.
module type FiniteSetS = sig ... end
include sig ... end
module FiniteSetOfPPSet : functor (PPSet : IStdlib.PrettyPrintable.PPSet) -> FiniteSetS with type FiniteSetOfPPSet.elt = PPSet.elt
Lift a PPSet to a powerset domain ordered by subset. The elements of the set should be drawn from a *finite* collection of possible values, since the widening operator here is just union.
module FiniteSet : functor (Element : IStdlib.PrettyPrintable.PrintableOrderedType) -> FiniteSetS with type FiniteSet.elt = Element.t
Lift a set to a powerset domain ordered by subset. The elements of the set should be drawn from a *finite* collection of possible values, since the widening operator here is just union.
module type InvertedSetS = sig ... end
module InvertedSet : functor (Element : IStdlib.PrettyPrintable.PrintableOrderedType) -> InvertedSetS with type InvertedSet.elt = Element.t
Lift a set to a powerset domain ordered by superset, so the join operator is intersection
module type MapS = sig ... end
include sig ... end
module MapOfPPMap : functor (PPMap : IStdlib.PrettyPrintable.PPMap) -> functor (ValueDomain : S) -> MapS with type key = PPMap.key and type value = ValueDomain.t and type t = ValueDomain.t PPMap.t
Map domain ordered by union over the set of bindings, so the bottom element is the empty map. Every element implicitly maps to bottom unless it is explicitly bound to something else. Uses PPMap as the underlying map
module Map : functor (Key : IStdlib.PrettyPrintable.PrintableOrderedType) -> functor (ValueDomain : S) -> MapS with type key = Key.t and type value = ValueDomain.t
Map domain ordered by union over the set of bindings, so the bottom element is the empty map. Every element implicitly maps to bottom unless it is explicitly bound to something else
module type InvertedMapS = sig ... end
module InvertedMap : functor (Key : IStdlib.PrettyPrintable.PrintableOrderedType) -> functor (ValueDomain : S) -> InvertedMapS with type key = Key.t and type value = ValueDomain.t
Map domain ordered by intersection over the set of bindings, so the top element is the empty map. Every element implictly maps to top unless it is explicitly bound to something else
module SafeInvertedMap : functor (Key : IStdlib.PrettyPrintable.PrintableOrderedType) -> functor (ValueDomain : WithTop) -> InvertedMapS with type key = Key.t and type value = ValueDomain.t
Similar to
InvertedMap
but it guarantees that it has a canonical form. For example, both{a -> top_v}
andempty
represent the same abstract valuetop
inInvertedMap
, but in this implementation,top
is always implemented asempty
by not adding thetop_v
explicitly.
include sig ... end
module FiniteMultiMap : functor (Key : IStdlib.PrettyPrintable.PrintableOrderedType) -> functor (Value : IStdlib.PrettyPrintable.PrintableOrderedType) -> sig ... end
module BooleanAnd : S with type t = bool
Boolean domain ordered by p || ~q. Useful when you want a boolean that's true only when it's true in both conditional branches.
module BooleanOr : WithBottom with type t = bool
Boolean domain ordered by ~p || q. Useful when you want a boolean that's true only when it's true in one conditional branch.
module type MaxCount = sig ... end
module CountDomain : functor (MaxCount : MaxCount) -> sig ... end
Domain keeping a non-negative count with a bounded maximum value. The count can be only incremented and decremented.
module DownwardIntDomain : functor (MaxCount : MaxCount) -> sig ... end
Domain keeping a non-negative count with a bounded maximum value.
join
is minimum andtop
is zero.