Module Pulselib__PulsePathCondition
module AbstractValue = Pulselib.PulseAbstractValue
module ValueHistory = Pulselib.PulseValueHistory
Building arithmetic constraints
val and_nonnegative : AbstractValue.t -> t -> t
and_nonnegative v phi
isphi ∧ v≥0
val and_positive : AbstractValue.t -> t -> t
and_positive v phi
isphi ∧ v>0
val and_eq_int : AbstractValue.t -> IR.IntLit.t -> t -> t
and_eq_int v i phi
isphi ∧ v=i
val simplify : keep:AbstractValue.Set.t -> t -> t
simplify ~keep phi
attempts to get rid of as many variables infv phi
but not inkeep
as possible
val and_callee : (AbstractValue.t * ValueHistory.t) AbstractValue.Map.t -> t -> callee:t -> (AbstractValue.t * ValueHistory.t) AbstractValue.Map.t * t
Operations
type operand
=
|
LiteralOperand of IR.IntLit.t
|
AbstractValueOperand of AbstractValue.t
val eval_binop : AbstractValue.t -> IR.Binop.t -> operand -> operand -> t -> t
val eval_unop : AbstractValue.t -> IR.Unop.t -> AbstractValue.t -> t -> t
val prune_binop : negated:bool -> IR.Binop.t -> operand -> operand -> t -> t
Queries
val is_known_zero : t -> AbstractValue.t -> bool
is_known_zero phi t
returnstrue
ifphi |- t = 0
,false
if we don't know for sure
val is_unsat_cheap : t -> bool
whether the state contains a contradiction, call this as often as you want
val is_unsat_expensive : t -> t * bool
whether the state contains a contradiction, only call this when you absolutely have to
val as_int : t -> AbstractValue.t -> int option
as_int phi t
returns an integer x such thatphi |- t = x
, if known for sure; see alsois_known_zero
val has_no_assumptions : t -> bool
whether the current path is independent of any calling context