You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

945 lines
31 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open! AbstractDomain.Types
open Ints
open Bounds
module DegreeKind = struct
type t = Linear | Log [@@deriving compare]
let compute d i =
match d with
| Linear ->
i
| Log -> (
try NonNegativeInt.log2_ceil_exn i with Invalid_argument _ -> NonNegativeInt.zero )
let pp_hole pp f d x = match d with Linear -> pp f x | Log -> Format.fprintf f "log(%a)" pp x
end
module Degree = struct
type t = {linear: NonNegativeInt.t; log: NonNegativeInt.t} [@@deriving compare]
let zero = {linear= NonNegativeInt.zero; log= NonNegativeInt.zero}
let succ (k : DegreeKind.t) d =
match k with
| Linear ->
{d with linear= NonNegativeInt.succ d.linear}
| Log ->
{d with log= NonNegativeInt.succ d.log}
let encode_to_int d =
(*
Constructs an integer compatible with compare.
We assume that degrees won't go exceed 100 ;-)
*)
(NonNegativeInt.to_int_exn d.linear * 100) + NonNegativeInt.to_int_exn d.log
let pp f d =
NonNegativeInt.pp f d.linear ;
if not (NonNegativeInt.is_zero d.log) then
F.fprintf f " + %a%slog" NonNegativeInt.pp d.log SpecialChars.dot_operator
end
module NonNegativeBoundWithDegreeKind = struct
type t = {degree_kind: DegreeKind.t; symbol: NonNegativeBound.t} [@@deriving compare]
let classify ({degree_kind; symbol} as self) =
match NonNegativeBound.classify symbol with
| Constant c ->
Constant (DegreeKind.compute degree_kind c)
| Symbolic _ ->
Symbolic self
| ValTop trace ->
ValTop trace
let mask_min_max_constant {degree_kind; symbol} =
{degree_kind; symbol= NonNegativeBound.mask_min_max_constant symbol}
let make degree_kind symbol = {degree_kind; symbol}
let int_lb {degree_kind; symbol} =
NonNegativeBound.int_lb symbol |> DegreeKind.compute degree_kind
let int_ub {degree_kind; symbol} =
NonNegativeBound.int_ub symbol |> Option.map ~f:(DegreeKind.compute degree_kind)
let subst callee_pname location {degree_kind; symbol} eval =
match NonNegativeBound.subst callee_pname location symbol eval with
| Constant c ->
Constant (DegreeKind.compute degree_kind c)
| Symbolic symbol ->
Symbolic {degree_kind; symbol}
| ValTop trace ->
Logging.d_printfln_escaped "subst(%a) became top." (NonNegativeBound.pp ~hum:false) symbol ;
ValTop trace
let pp ~hum f {degree_kind; symbol} =
DegreeKind.pp_hole (NonNegativeBound.pp ~hum) f degree_kind symbol
let degree_kind {degree_kind} = degree_kind
let symbol {symbol} = symbol
let split_mult {degree_kind; symbol} =
Option.map (NonNegativeBound.split_mult symbol) ~f:(fun (s1, s2) ->
(make degree_kind s1, make degree_kind s2) )
let make_err_trace_symbol symbol = NonNegativeBound.make_err_trace symbol
end
let pp_magic_parentheses pp fmt x =
let s = F.asprintf "%a" pp x in
if String.contains s ' ' then F.fprintf fmt "(%s)" s else F.pp_print_string fmt s
module NonNegativeNonTopPolynomial = struct
module Key = struct
type t =
| NonNegativeBoundWithDegreeKind of NonNegativeBoundWithDegreeKind.t
| FuncPtr of Symb.SymbolPath.partial
[@@deriving compare]
let lift_valclass = function
| Symbolic s ->
Symbolic (NonNegativeBoundWithDegreeKind s)
| (Constant _ | ValTop _) as x ->
x
let pp_hum ~hum f = function
| NonNegativeBoundWithDegreeKind bound ->
pp_magic_parentheses (NonNegativeBoundWithDegreeKind.pp ~hum) f bound
| FuncPtr partial ->
F.fprintf f "|%a|" Symb.SymbolPath.pp_partial partial
let pp = pp_hum ~hum:true
let is_func_ptr = function FuncPtr _ -> true | NonNegativeBoundWithDegreeKind _ -> false
end
module M = struct
include PrettyPrintable.MakePPMap (Key)
let increasing_union ~f m1 m2 = union (fun _ v1 v2 -> Some (f v1 v2)) m1 m2
let zip m1 m2 = merge (fun _ opt1 opt2 -> Some (opt1, opt2)) m1 m2
let fold_no_key m ~init ~f =
let f _k v acc = f acc v in
fold f m init
let le ~le_elt m1 m2 =
match
merge
(fun _ v1_opt v2_opt ->
match (v1_opt, v2_opt) with
| Some _, None ->
raise Exit
| Some lhs, Some rhs when not (le_elt ~lhs ~rhs) ->
raise Exit
| _ ->
None )
m1 m2
with
| _ ->
true
| exception Exit ->
false
let xcompare ~xcompare_elt ~lhs ~rhs =
(* TODO: avoid creating zipped map *)
zip lhs rhs
|> PartialOrder.container ~fold:fold_no_key ~xcompare_elt:(PartialOrder.of_opt ~xcompare_elt)
end
(** If x < y < z then [2 + 3 * x + 4 * x ^ 2 + x * y + 7 * y ^ 2 * z] is represented by
{[
{const= 2; terms= {
x -> {const= 3; terms= {
x -> {const= 4; terms={}},
y -> {const= 1; terms={}}
}},
y -> {const= 0; terms= {
y -> {const= 0; terms= {
z -> {const= 7; terms={}}
}}
}}
}}
]}
The representation is a tree, each edge from a node to a child (terms) represents a
multiplication by a symbol. If a node has a non-zero const, it represents the multiplication
(of the path) by this constant. In the example above, we have the following paths:
- [2]
- [x * 3]
- [x * x * 4]
- [x * y * 1]
- [y * y * z * 7]
Invariants:
- except for the root, [terms <> {} || const <> 0]
- symbols children of a term are 'smaller' than its self symbol
- contents of terms are not zero
- symbols in terms are only symbolic values *)
type poly = {const: NonNegativeInt.t; terms: poly M.t} [@@deriving compare]
type t = {poly: poly; autoreleasepool_trace: BoundTrace.t option} [@@deriving compare]
let get_autoreleasepool_trace {autoreleasepool_trace} = autoreleasepool_trace
let rec degree_poly {terms} =
M.fold
(fun t p cur_max ->
let p = degree_poly p in
let degree_term =
match t with
| NonNegativeBoundWithDegreeKind t ->
Degree.succ (NonNegativeBoundWithDegreeKind.degree_kind t) p
| FuncPtr _ ->
p
in
if Degree.compare degree_term cur_max > 0 then degree_term else cur_max )
terms Degree.zero
let join_autoreleasepool_trace poly_x poly_y x y =
Option.merge x y ~f:(fun x y ->
if Degree.compare (degree_poly poly_x) (degree_poly poly_y) >= 0 then x else y )
let poly_of_non_negative_int : NonNegativeInt.t -> poly = fun const -> {const; terms= M.empty}
let of_non_negative_int : ?autoreleasepool_trace:BoundTrace.t -> NonNegativeInt.t -> t =
fun ?autoreleasepool_trace const -> {poly= poly_of_non_negative_int const; autoreleasepool_trace}
let zero_poly = poly_of_non_negative_int NonNegativeInt.zero
let zero = of_non_negative_int NonNegativeInt.zero
let one_poly = poly_of_non_negative_int NonNegativeInt.one
let one ?autoreleasepool_trace () = of_non_negative_int ?autoreleasepool_trace NonNegativeInt.one
let of_int_exn : ?autoreleasepool_trace:BoundTrace.t -> int -> t =
fun ?autoreleasepool_trace i ->
i |> NonNegativeInt.of_int_exn |> of_non_negative_int ?autoreleasepool_trace
let is_zero_poly : poly -> bool =
fun {const; terms} -> NonNegativeInt.is_zero const && M.is_empty terms
let is_zero : t -> bool = fun {poly} -> is_zero_poly poly
let is_one_poly : poly -> bool =
fun {const; terms} -> NonNegativeInt.is_one const && M.is_empty terms
let is_one : t -> bool = fun {poly} -> is_one_poly poly
let is_constant : t -> bool = fun {poly= {terms}} -> M.is_empty terms
let is_symbolic : t -> bool = fun p -> not (is_constant p)
let rec plus_poly : poly -> poly -> poly =
fun p1 p2 ->
{ const= NonNegativeInt.(p1.const + p2.const)
; terms= M.increasing_union ~f:plus_poly p1.terms p2.terms }
let plus : t -> t -> t =
fun p1 p2 ->
{ poly= plus_poly p1.poly p2.poly
; autoreleasepool_trace=
join_autoreleasepool_trace p1.poly p2.poly p1.autoreleasepool_trace p2.autoreleasepool_trace
}
let rec mult_const_positive : poly -> PositiveInt.t -> poly =
fun {const; terms} c ->
{ const= NonNegativeInt.(const * (c :> NonNegativeInt.t))
; terms= M.map (fun p -> mult_const_positive p c) terms }
let mult_const_poly : poly -> NonNegativeInt.t -> poly =
fun p c ->
match PositiveInt.of_big_int (c :> Z.t) with
| None ->
zero_poly
| Some c ->
mult_const_positive p c
(* (c + r * R + s * S + t * T) x s
= 0 + r * (R x s) + s * (c + s * S + t * T) *)
let rec mult_symb_poly : poly -> Key.t -> poly =
fun {const; terms} s ->
let less_than_s, equal_s_opt, greater_than_s = M.split s terms in
let less_than_s = M.map (fun p -> mult_symb_poly p s) less_than_s in
let s_term =
let terms =
match equal_s_opt with
| None ->
greater_than_s
| Some equal_s_p ->
M.add s equal_s_p greater_than_s
in
{const; terms}
in
let terms = if is_zero_poly s_term then less_than_s else M.add s s_term less_than_s in
{const= NonNegativeInt.zero; terms}
let rec mult_poly : poly -> poly -> poly =
fun p1 p2 ->
if is_zero_poly p1 || is_zero_poly p2 then zero_poly
else if is_one_poly p1 then p2
else if is_one_poly p2 then p1
else
mult_const_poly p1 p2.const
|> M.fold (fun s p acc -> plus_poly (mult_symb_poly (mult_poly p p1) s) acc) p2.terms
let mult_common p1 p2 ~join_autoreleasepool_trace =
let poly = mult_poly p1.poly p2.poly in
let autoreleasepool_trace =
if is_zero_poly poly then None
else
join_autoreleasepool_trace p1.poly p2.poly p1.autoreleasepool_trace p2.autoreleasepool_trace
in
{poly; autoreleasepool_trace}
let mult p1 p2 = mult_common p1 p2 ~join_autoreleasepool_trace
(** It takes only the trace of the body part, because the trace for the iteration number will be
taken later from symbolic values. *)
let mult_loop ~iter ~body =
mult_common iter body ~join_autoreleasepool_trace:(fun _iter_poly _body_poly _iter body ->
body )
let singleton key =
{ poly= {const= NonNegativeInt.zero; terms= M.singleton key one_poly}
; autoreleasepool_trace= None }
let of_func_ptr path = singleton (FuncPtr path)
let rec of_valclass : (NonNegativeInt.t, Key.t, 't) valclass -> ('t, t, 't) below_above = function
| ValTop trace ->
Above trace
| Constant i ->
Val (of_non_negative_int i)
| Symbolic (NonNegativeBoundWithDegreeKind s as key) -> (
match NonNegativeBoundWithDegreeKind.split_mult s with
| None ->
Val (singleton key)
| Some (s1, s2) -> (
match
( of_valclass (Key.lift_valclass (NonNegativeBoundWithDegreeKind.classify s1))
, of_valclass (Key.lift_valclass (NonNegativeBoundWithDegreeKind.classify s2)) )
with
| Val s1, Val s2 ->
Val (mult s1 s2)
| Below _, _ | _, Below _ ->
assert false
| (Above _ as t), _ | _, (Above _ as t) ->
t ) )
| Symbolic (FuncPtr _ as key) ->
Val (singleton key)
let rec int_lb {const; terms} =
M.fold
(fun symbol polynomial acc ->
match symbol with
| NonNegativeBoundWithDegreeKind symbol ->
let s_lb = NonNegativeBoundWithDegreeKind.int_lb symbol in
let p_lb = int_lb polynomial in
NonNegativeInt.((s_lb * p_lb) + acc)
| FuncPtr _ ->
acc )
terms const
let rec int_ub {const; terms} =
M.fold
(fun symbol polynomial acc ->
match symbol with
| NonNegativeBoundWithDegreeKind symbol ->
Option.bind acc ~f:(fun acc ->
Option.bind (NonNegativeBoundWithDegreeKind.int_ub symbol) ~f:(fun s_ub ->
Option.map (int_ub polynomial) ~f:(fun p_ub ->
NonNegativeInt.((s_ub * p_ub) + acc) ) ) )
| FuncPtr _ ->
acc )
terms (Some const)
(* assumes symbols are not comparable *)
let rec leq_poly : lhs:poly -> rhs:poly -> bool =
fun ~lhs ~rhs ->
phys_equal lhs rhs
|| NonNegativeInt.leq ~lhs:lhs.const ~rhs:rhs.const
&& M.le ~le_elt:leq_poly lhs.terms rhs.terms
|| Option.exists (int_ub lhs) ~f:(fun lhs_ub ->
NonNegativeInt.leq ~lhs:lhs_ub ~rhs:(int_lb rhs) )
let leq ~lhs ~rhs = leq_poly ~lhs:lhs.poly ~rhs:rhs.poly
let rec xcompare_poly ~lhs ~rhs =
let cmp_const =
PartialOrder.of_compare ~compare:NonNegativeInt.compare ~lhs:lhs.const ~rhs:rhs.const
in
let cmp_terms = M.xcompare ~xcompare_elt:xcompare_poly ~lhs:lhs.terms ~rhs:rhs.terms in
PartialOrder.join cmp_const cmp_terms
let xcompare ~lhs ~rhs = xcompare_poly ~lhs:lhs.poly ~rhs:rhs.poly
let rec mask_min_max_constant_poly {const; terms} =
{ const
; terms=
M.fold
(fun s p acc ->
let p' = mask_min_max_constant_poly p in
match s with
| NonNegativeBoundWithDegreeKind s ->
M.update
(NonNegativeBoundWithDegreeKind
(NonNegativeBoundWithDegreeKind.mask_min_max_constant s))
(function
| None ->
Some p'
| Some p ->
if leq_poly ~lhs:p ~rhs:p' then Some p' else Some p )
acc
| FuncPtr _ as key ->
M.add key p' acc )
terms M.empty }
let mask_min_max_constant x = {x with poly= mask_min_max_constant_poly x.poly}
(* assumes symbols are not comparable *)
(* TODO: improve this for comparable symbols *)
let min_default_left : t -> t -> t =
fun p1 p2 ->
match xcompare ~lhs:p1 ~rhs:p2 with
| `Equal | `LeftSmallerThanRight ->
p1
| `RightSmallerThanLeft ->
p2
| `NotComparable ->
if is_constant p1 then p1 else if is_constant p2 then p2 else p1
let subst callee_pname location {poly; autoreleasepool_trace} eval_sym eval_func_ptrs
get_closure_callee_cost ~default_closure_cost =
let exception ReturnTop of (NonNegativeBoundWithDegreeKind.t * BoundTrace.t) in
(* avoids top-lifting everything *)
let rec subst_poly {const; terms} =
M.fold
(fun s p acc ->
match s with
| NonNegativeBoundWithDegreeKind s -> (
match NonNegativeBoundWithDegreeKind.subst callee_pname location s eval_sym with
| Constant c -> (
match PositiveInt.of_big_int (c :> Z.t) with
| None ->
acc
| Some c ->
let p = subst_poly p in
mult_const_positive p c |> plus_poly acc )
| ValTop trace ->
let p = subst_poly p in
if is_zero_poly p then acc else raise (ReturnTop (s, trace))
| Symbolic s ->
let p = subst_poly p in
mult_symb_poly p (NonNegativeBoundWithDegreeKind s) |> plus_poly acc )
| FuncPtr s ->
let funcptr_p =
let p = subst_poly p in
match FuncPtr.Set.is_singleton_or_more (eval_func_ptrs s) with
| Singleton (Closure {name}) ->
let closure_p =
match get_closure_callee_cost name with
| Some {poly= closure_p} ->
closure_p
| None ->
poly_of_non_negative_int default_closure_cost
in
mult_poly closure_p p
| Singleton (Path path) ->
mult_symb_poly p (FuncPtr path)
| Empty | More ->
mult_poly (poly_of_non_negative_int default_closure_cost) p
in
plus_poly acc funcptr_p )
terms (poly_of_non_negative_int const)
in
match subst_poly poly with
| poly ->
let autoreleasepool_trace =
Option.map autoreleasepool_trace ~f:(BoundTrace.call ~callee_pname ~location)
in
Val {poly; autoreleasepool_trace}
| exception ReturnTop s_trace ->
Above s_trace
let rec is_zero_degree_poly {const; terms} =
NonNegativeInt.is_zero const && is_zero_degree_terms terms
and is_zero_degree_terms terms =
M.for_all (fun key v -> Key.is_func_ptr key || is_zero_degree_poly v) terms
(** Emit a pair (d,t) where d is the degree of the polynomial and t is the first term with such
degree. When calculating the degree, it ignores symbols of function pointer, so they are
addressed as if zero cost. *)
let degree_with_term {poly; autoreleasepool_trace} =
let rec degree_with_term_poly {const; terms} =
let degree_terms =
M.fold
(fun t p cur_max ->
match (t, degree_with_term_poly p) with
(* It ignores function pointers when calculating degree of polynomial, since their
semantics is different to the other symbolic values. For example, when a function
has a complexity of |fptr| where fptr is a function pointer, it does not make sense
to say the function has a linear complexity. *)
| FuncPtr _, _ ->
cur_max
| _, (_, p') when is_zero_poly p' ->
cur_max
| NonNegativeBoundWithDegreeKind b, (d, p') ->
let d' = Degree.succ (NonNegativeBoundWithDegreeKind.degree_kind b) d in
if Degree.compare d' (fst cur_max) > 0 then (d', mult_symb_poly p' t) else cur_max
)
terms (Degree.zero, zero_poly)
in
if is_zero_poly (snd degree_terms) then
if NonNegativeInt.is_zero const then (Degree.zero, zero_poly) else (Degree.zero, one_poly)
else degree_terms
in
let d, poly = degree_with_term_poly poly in
(d, {poly; autoreleasepool_trace})
let degree p = fst (degree_with_term p)
let multiplication_sep = F.sprintf " %s " SpecialChars.multiplication_sign
let pp_poly : hum:bool -> F.formatter -> poly -> unit =
let add_symb s (((last_s, last_occ) as last), others) =
if Int.equal 0 (Key.compare s last_s) then ((last_s, PositiveInt.succ last_occ), others)
else ((s, PositiveInt.one), last :: others)
in
let pp_coeff fmt (c : NonNegativeInt.t) =
if Z.(gt (c :> Z.t) one) then
F.fprintf fmt "%a %s " NonNegativeInt.pp c SpecialChars.dot_operator
in
let pp_exp fmt (e : PositiveInt.t) =
if Z.(gt (e :> Z.t) one) then PositiveInt.pp_exponent fmt e
in
let pp_symb_exp ~hum fmt (symb, exp) = F.fprintf fmt "%a%a" (Key.pp_hum ~hum) symb pp_exp exp in
let pp_symbs ~hum fmt (last, others) =
List.rev_append others [last] |> Pp.seq ~sep:multiplication_sep (pp_symb_exp ~hum) fmt
in
let rec pp_sub ~hum ~print_plus symbs fmt {const; terms} =
let print_plus =
if not (NonNegativeInt.is_zero const) then (
if print_plus then F.pp_print_string fmt " + " ;
F.fprintf fmt "%a%a" pp_coeff const (pp_symbs ~hum) symbs ;
true )
else print_plus
in
( M.fold
(fun s p print_plus ->
if Config.cost_suppress_func_ptr && (Key.is_func_ptr s || is_zero_degree_poly p) then
print_plus
else (
pp_sub ~hum ~print_plus (add_symb s symbs) fmt p ;
true ) )
terms print_plus
: bool )
|> ignore
in
fun ~hum fmt {const; terms} ->
let const_not_zero = not (NonNegativeInt.is_zero const) in
if
const_not_zero || M.is_empty terms
|| (Config.cost_suppress_func_ptr && is_zero_degree_terms terms)
then NonNegativeInt.pp fmt const ;
( M.fold
(fun s p print_plus ->
if Config.cost_suppress_func_ptr && (Key.is_func_ptr s || is_zero_degree_poly p) then
print_plus
else (
pp_sub ~hum ~print_plus ((s, PositiveInt.one), []) fmt p ;
true ) )
terms const_not_zero
: bool )
|> ignore
let pp : hum:bool -> F.formatter -> t -> unit = fun ~hum fmt {poly} -> pp_poly ~hum fmt poly
let get_symbols p : NonNegativeBound.t list =
let rec get_symbols_sub {terms} acc =
M.fold
(fun s p acc ->
let acc =
match s with
| NonNegativeBoundWithDegreeKind s ->
NonNegativeBoundWithDegreeKind.symbol s :: acc
| FuncPtr _ ->
acc
in
get_symbols_sub p acc )
terms acc
in
get_symbols_sub p.poly []
let polynomial_traces ?(is_autoreleasepool_trace = false) p =
let traces =
get_symbols p |> List.map ~f:NonNegativeBoundWithDegreeKind.make_err_trace_symbol
in
if is_autoreleasepool_trace then
traces
@ Option.value_map (get_autoreleasepool_trace p) ~default:[] ~f:(fun trace ->
[("autorelease", BoundTrace.make_err_trace ~depth:0 trace)] )
else traces
end
module TopTrace = struct
type t =
| UnboundedLoop of {bound_trace: BoundTrace.t}
| UnboundedSymbol of
{location: Location.t; symbol: NonNegativeBoundWithDegreeKind.t; bound_trace: BoundTrace.t}
| Call of {location: Location.t; callee_pname: Procname.t; callee_trace: t}
[@@deriving compare]
let rec length = function
| UnboundedLoop {bound_trace} | UnboundedSymbol {bound_trace} ->
1 + BoundTrace.length bound_trace
| Call {callee_trace} ->
1 + length callee_trace
let compare t1 t2 = [%compare: int * t] (length t1, t1) (length t2, t2)
let unbounded_loop bound_trace = UnboundedLoop {bound_trace}
let unbounded_symbol ~location ~symbol bound_trace =
UnboundedSymbol {location; symbol; bound_trace}
let call ~location ~callee_pname callee_trace = Call {location; callee_pname; callee_trace}
let rec pp f = function
| UnboundedLoop {bound_trace} ->
F.fprintf f "%a -> UnboundedLoop" BoundTrace.pp bound_trace
| UnboundedSymbol {location; symbol; bound_trace} ->
F.fprintf f "%a -> UnboundedSymbol (%a): %a" BoundTrace.pp bound_trace Location.pp location
(NonNegativeBoundWithDegreeKind.pp ~hum:false)
symbol
| Call {callee_pname; callee_trace; location} ->
F.fprintf f "%a -> Call `%a` (%a)" pp callee_trace Procname.pp callee_pname Location.pp
location
let rec make_err_trace ~depth trace =
match trace with
| UnboundedLoop {bound_trace} ->
let bound_err_trace = BoundTrace.make_err_trace ~depth bound_trace in
[("Unbounded loop", bound_err_trace)] |> Errlog.concat_traces
| UnboundedSymbol {location; symbol; bound_trace} ->
let desc =
F.asprintf "Unbounded value %a" (NonNegativeBoundWithDegreeKind.pp ~hum:true) symbol
in
Errlog.make_trace_element depth location desc []
:: BoundTrace.make_err_trace ~depth bound_trace
| Call {location; callee_pname; callee_trace} ->
let desc = F.asprintf "Call to %a" Procname.pp callee_pname in
Errlog.make_trace_element depth location desc []
:: make_err_trace ~depth:(depth + 1) callee_trace
end
module TopTraces = struct
include AbstractDomain.MinReprSet (TopTrace)
let make_err_trace traces =
match min_elt traces with None -> [] | Some trace -> TopTrace.make_err_trace ~depth:0 trace
end
module UnreachableTrace = struct
type t =
| UnreachableNode of Location.t
| Call of {location: Location.t; callee_pname: Procname.t; callee_trace: t}
[@@deriving compare]
let rec length = function
| UnreachableNode _ ->
1
| Call {callee_trace} ->
1 + length callee_trace
let compare t1 t2 = [%compare: int * t] (length t1, t1) (length t2, t2)
let unreachable_node node_loc = UnreachableNode node_loc
let call ~location ~callee_pname callee_trace = Call {location; callee_pname; callee_trace}
let rec pp f = function
| UnreachableNode node_loc ->
F.fprintf f "UnreachableNode (%a)" Location.pp node_loc
| Call {callee_pname; callee_trace; location} ->
F.fprintf f "%a -> Call `%a` (%a)" pp callee_trace Procname.pp callee_pname Location.pp
location
let rec make_err_trace ~depth trace =
match trace with
| UnreachableNode node_loc ->
[Errlog.make_trace_element depth node_loc "Unreachable node" []]
| Call {location; callee_pname; callee_trace} ->
let desc = F.asprintf "Call to %a" Procname.pp callee_pname in
Errlog.make_trace_element depth location desc []
:: make_err_trace ~depth:(depth + 1) callee_trace
end
module UnreachableTraces = struct
include AbstractDomain.MinReprSet (UnreachableTrace)
let make_err_trace traces =
match min_elt traces with
| None ->
[]
| Some trace ->
UnreachableTrace.make_err_trace ~depth:0 trace
end
module NonNegativePolynomial = struct
(* Use Above for Top values, Below for Unreachable values with their trace, and Val for non-negative polynomials *)
type t = (UnreachableTraces.t, NonNegativeNonTopPolynomial.t, TopTraces.t) below_above
type degree_with_term =
( UnreachableTraces.t
, Degree.t * NonNegativeNonTopPolynomial.t
, TopTraces.t )
AbstractDomain.Types.below_above
let leq =
AbstractDomain.StackedUtils.leq ~leq_below:UnreachableTraces.leq
~leq:NonNegativeNonTopPolynomial.leq ~leq_above:TopTraces.leq
let pp ~hum =
let pp_below f traces =
AbstractDomain.BottomLiftedUtils.pp_bottom f ;
if not hum then F.fprintf f ": %a" UnreachableTraces.pp traces
in
let pp_above f traces =
AbstractDomain.TopLiftedUtils.pp_top f ;
if not hum then F.fprintf f ": %a" TopTraces.pp traces
in
AbstractDomain.StackedUtils.pp ~pp:(NonNegativeNonTopPolynomial.pp ~hum) ~pp_above ~pp_below
let pp_hum = pp ~hum:true
let pp = pp ~hum:false
let top = Above TopTraces.bottom
let zero = Val NonNegativeNonTopPolynomial.zero
let one ?autoreleasepool_trace () =
Val (NonNegativeNonTopPolynomial.one ?autoreleasepool_trace ())
let of_unreachable node_loc =
Below (UnreachableTraces.singleton (UnreachableTrace.unreachable_node node_loc))
let of_int_exn ?autoreleasepool_trace i =
Val (NonNegativeNonTopPolynomial.of_int_exn ?autoreleasepool_trace i)
let make_trace_set ~map_above =
AbstractDomain.StackedUtils.map
~f_below:(fun _ -> assert false)
~f:Fn.id
~f_above:(fun above -> TopTraces.singleton (map_above above))
let of_non_negative_bound ?(degree_kind = DegreeKind.Linear) b =
b
|> NonNegativeBoundWithDegreeKind.make degree_kind
|> NonNegativeBoundWithDegreeKind.classify |> NonNegativeNonTopPolynomial.Key.lift_valclass
|> NonNegativeNonTopPolynomial.of_valclass
(* Invariant: we always get a non-below bound from [of_valclass] *)
|> make_trace_set ~map_above:TopTrace.unbounded_loop
let of_func_ptr path = Val (NonNegativeNonTopPolynomial.of_func_ptr path)
let is_symbolic = function
| Below _ | Above _ ->
false
| Val p ->
NonNegativeNonTopPolynomial.is_symbolic p
let is_top = function Above _ -> true | _ -> false
let is_unreachable = function Below _ -> true | _ -> false
let is_zero = function Val p when NonNegativeNonTopPolynomial.is_zero p -> true | _ -> false
let is_one = function Val p when NonNegativeNonTopPolynomial.is_one p -> true | _ -> false
let top_lifted_increasing ~f p1 p2 =
AbstractDomain.StackedUtils.combine ~f_below:UnreachableTraces.join ~dir:`Increasing p1 p2 ~f
~f_above:TopTraces.join
let unreachable_lifted_increasing ~f p1 p2 =
match (p1, p2) with
| (Below _ as below), _ | _, (Below _ as below) ->
below
| _ ->
top_lifted_increasing ~f p1 p2
let plus = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.plus
let mult_unreachable = unreachable_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult
let mult = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult
let mult_loop ~iter ~body =
top_lifted_increasing iter body ~f:(fun iter body ->
NonNegativeNonTopPolynomial.mult_loop ~iter ~body )
let min_default_left p1 p2 =
AbstractDomain.StackedUtils.combine ~dir:`Decreasing p1 p2
~f:NonNegativeNonTopPolynomial.min_default_left ~f_above:TopTraces.join
~f_below:UnreachableTraces.join
let subst callee_pname location p eval_sym eval_func_ptrs get_closure_callee_cost
~default_closure_cost =
match p with
| Above callee_traces ->
Above
(TopTraces.map
(fun callee_trace -> TopTrace.call ~callee_pname ~location callee_trace)
callee_traces)
| Below callee_traces ->
Below
(UnreachableTraces.map
(fun callee_trace -> UnreachableTrace.call ~callee_pname ~location callee_trace)
callee_traces)
| Val p ->
let get_closure_callee_cost pname =
match get_closure_callee_cost pname with
| Some (Val p) ->
Some p
| None | Some (Below _ | Above _) ->
(* It doesn't propagate Top/Bottoms if the closure has these costs. *)
None
in
NonNegativeNonTopPolynomial.subst callee_pname location p eval_sym eval_func_ptrs
get_closure_callee_cost ~default_closure_cost
|> make_trace_set ~map_above:(fun (symbol, bound_trace) ->
TopTrace.unbounded_symbol ~location ~symbol bound_trace )
let degree p =
match p with Above _ | Below _ -> None | Val p -> Some (NonNegativeNonTopPolynomial.degree p)
let compare_by_degree =
let cmp _ _ = 0 (* All pairs of Top/Unreachable should be considered equal *) in
AbstractDomain.StackedUtils.compare ~cmp_above:cmp
~cmp:(fun p1 p2 ->
Degree.compare
(NonNegativeNonTopPolynomial.degree p1)
(NonNegativeNonTopPolynomial.degree p2) )
~cmp_below:cmp
let get_degree_with_term =
AbstractDomain.StackedUtils.map ~f:NonNegativeNonTopPolynomial.degree_with_term ~f_above:Fn.id
~f_below:Fn.id
let pp_degree ~only_bigO fmt = function
| Above _ ->
Format.pp_print_string fmt "Top"
| Below _ ->
Format.pp_print_string fmt "Unreachable"
| Val (degree, degree_term) ->
if only_bigO then
Format.fprintf fmt "O(%a)"
(NonNegativeNonTopPolynomial.pp ~hum:true)
(NonNegativeNonTopPolynomial.mask_min_max_constant degree_term)
else Degree.pp fmt degree
let degree_str p =
match degree p with
| Some degree ->
Format.asprintf ", degree = %a" Degree.pp degree
| None ->
""
let polynomial_traces ?is_autoreleasepool_trace = function
| Below trace ->
UnreachableTraces.make_err_trace trace
| Val p ->
NonNegativeNonTopPolynomial.polynomial_traces ?is_autoreleasepool_trace p
|> Errlog.concat_traces
| Above trace ->
TopTraces.make_err_trace trace
let encode astate = Marshal.to_string astate [] |> Base64.encode_exn
let decode enc_str = Marshal.from_string (Base64.decode_exn enc_str) 0
end