You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

144 lines
7.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 导入需要的工具包
from py2neo import Graph, Node, Relationship, NodeMatcher, Subgraph
import pandas as pd
import numpy as np
import os
import sys
sys.path.append(os.getcwd())
import json
from config import neo4j_url,neo4j_username,neo4j_password
from pprint import pprint as pp
# 连接Neo4j数据库
graph = Graph(neo4j_url, auth=(neo4j_username,neo4j_password) )
def get_initial_path(course_id, platform):
course_query = "match(c:`教学课堂`) where c.course_id='{}' return c.course_id".format(course_id)
# 查询course_id信息获取知识森林中课堂信息
course_result = graph.run(course_query).data()
# 判断course_id是否存在如果存在进行如下查询操作返回查询结果如不存在返回空值
if course_result:
# 知识森林查询实训相关节点
shixun_query = '''match(c:`教学课堂`) where c.course_id="{}" match(c)-[:`课堂课程`]->(s:`实践课程`)
match(s)-[:`课程章节`]->(st:`章节`) match(st)-[:`章节知识点`]->(kn:`知识点`)
match(kn)-[:`知识点实训`]->(shixun:`实训`) return st.stage_id as stage_id,st.stage_name as stage_name,
st.stage_sort as stage_sort,kn.knowledge_id as knowledge_id,kn.knowledge as knowledge,
shixun.shixun_id as shixun_id,shixun.shixun_name as shixun_name,shixun.link as shixun_link,
count(shixun.shixun_id) as shixun_num'''.format(course_id)
# 获取实训相关信息若不存在为统一处理返回空DataFrame
shixun = graph.run(shixun_query).data()
if shixun:
# 将查询结果转化为dataframe格式
shixun_data = pd.DataFrame(shixun)
else:
# 实训结果不存在,赋予一个相同结构的空值
shixun_data = pd.DataFrame(columns=["stage_id","stage_name","stage_sort","knowledge_id",
"knowledge","shixun_id","shixun_name","shixun_link","shixun_num"])
# 知识森林查询教学视频相关节点
video_query = '''match(c:`教学课堂`) where c.course_id="{}" match(c)-[:`课堂课程`]->(s:`实践课程`)
match(s)-[:`课程章节`]->(st:`章节`) match(st)-[:`章节知识点`]->(kn:`知识点`)
match(kn)-[:`知识点视频`]->(video:`教学视频`) return st.stage_id as stage_id, st.stage_name as stage_name,
st.stage_sort as stage_sort,kn.knowledge_id as knowledge_id,kn.knowledge as knowledge,
video.video_item_id as video_id,video.video_name as video_name,video.link as video_link,
count(video.video_item_id) as video_num'''.format(course_id)
# 获取教学视频相关信息若不存在为统一处理返回空DataFrame
video = graph.run(video_query).data()
# 判断获取的教学视频是否为空
if video:
# 将教学视频的查询结果转化为dataframe格式
video_data = pd.DataFrame(video)
else:
# 教学视频为空,返回相同数据结构的空值
video_data = pd.DataFrame(columns=["stage_id","stage_name","stage_sort","knowledge_id",
"knowledge","video_id","video_name","video_link","video_num"])
# 知识森林查询教学课件相关节点
att_query = '''match(c:`教学课堂`) where c.course_id="{}" match(c)-[:`课堂课程`]->(s:`实践课程`)
match(s)-[:`课程章节`]->(st:`章节`) match(st)-[:`章节知识点`]->(kn:`知识点`)
match(kn)-[:`知识点课件`]->(att:`课件`) return st.stage_id as stage_id,st.stage_name as stage_name,
st.stage_sort as stage_sort,kn.knowledge_id as knowledge_id,kn.knowledge as knowledge ,
att.attachment_id as attachment_id,att.filename as filename,att.link as attachment_link,
count(att.attachment_id) as attachment_num'''.format(course_id)
#获取教学课件相关信息若不存在为统一处理返回空DataFrame
att = graph.run(att_query).data()
if att:
# 将教学课件的查询结果转换成dataframe格式
att_data = pd.DataFrame(att)
else:
# 教学课件为空,返回相同数据结构的空值
att_data = pd.DataFrame(columns=["stage_id","stage_name","stage_sort","knowledge_id","knowledge",
"attachment_id","filename","attachment_link"])
#将三种教学资源合并
merged_data = pd.merge(shixun_data,video_data,on=['stage_id','stage_name',"stage_sort",'knowledge_id',
'knowledge'],how='outer')
merged_data = pd.merge(merged_data,att_data,on=['stage_id','stage_name',"stage_sort",'knowledge_id',
'knowledge'],how='outer')
# 默认为头歌地址添加ilearning地址
if platform == '1':
merged_data['attachment_link'] = merged_data['attachment_link'].str.replace('www.', 'ilearning.')
merged_data['shixun_link'] = merged_data['shixun_link'].str.replace('www.', 'ilearning.')
merged_data['video_link'] = merged_data['video_link'].str.replace('www.', 'ilearning.')
#对于合并后的结果,对教学资源的数量进行填充
merged_data['shixun_num'].fillna(0,inplace=True)
merged_data['video_num'].fillna(0,inplace=True)
merged_data['attachment_num'].fillna(0,inplace=True)
# 分组获取实训字典
shixun = (merged_data.groupby(['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
'shixun_num','video_num','attachment_num'])
.apply(lambda x:x[['shixun_id','shixun_name', 'shixun_link']].to_dict('r'))
.reset_index(name='shixun'))
# 分组获取教学视频字典
video = (merged_data.groupby(['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
'shixun_num','video_num','attachment_num'])
.apply(lambda x:x[['video_id','video_name', 'video_link']].to_dict('r'))
.reset_index(name='video'))
# 分组获取教学课件字典
att = (merged_data.groupby(['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
'shixun_num','video_num','attachment_num'])
.apply(lambda x:x[['attachment_id','filename', 'attachment_link']].to_dict('r'))
.reset_index(name='attachment'))
# 对分好组的教学资源字典按照章节知识点进行合并
shixun_video = shixun.merge(video,how='outer',on=['stage_id','stage_name',"stage_sort",'knowledge_id',
'knowledge','shixun_num','video_num','attachment_num'])
res=shixun_video.merge(att,how='outer',on=['stage_id','stage_name',"stage_sort",'knowledge_id','knowledge',
'shixun_num','video_num','attachment_num'])
# 按照知识点进行分组,并命名为知识点
result = (res.groupby(['stage_id','stage_name',"stage_sort"])
.apply(lambda x :x[['knowledge_id','knowledge','shixun_num','video_num','attachment_num',
'shixun','video','attachment']].to_dict('r'))
.reset_index(name='knowledge'))
# 将最终结果转换成JSON格式
result = json.loads(result.to_json(orient='records',force_ascii=False))
return result
else:
# 若course_id为空或者course_id不存在返回空字典
return {}
if __name__ == '__main__':
# 读取数据
course_id = "19043"
recommend_results = get_initial_path(course_id,'1')
pp(recommend_results)