You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

29 lines
1.1 KiB

import torch
from torch import Tensor
def dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon: float = 1e-6):
# Average of Dice coefficient for all batches, or for a single mask
assert input.size() == target.size()
assert input.dim() == 3 or not reduce_batch_first
sum_dim = (-1, -2) if input.dim() == 2 or not reduce_batch_first else (-1, -2, -3)
inter = 2 * (input * target).sum(dim=sum_dim)
sets_sum = input.sum(dim=sum_dim) + target.sum(dim=sum_dim)
sets_sum = torch.where(sets_sum == 0, inter, sets_sum)
dice = (inter + epsilon) / (sets_sum + epsilon)
return dice.mean()
def multiclass_dice_coeff(input: Tensor, target: Tensor, reduce_batch_first: bool = False, epsilon: float = 1e-6):
# Average of Dice coefficient for all classes
return dice_coeff(input.flatten(0, 1), target.flatten(0, 1), reduce_batch_first, epsilon)
def dice_loss(input: Tensor, target: Tensor, multiclass: bool = False):
# Dice loss (objective to minimize) between 0 and 1
fn = multiclass_dice_coeff if multiclass else dice_coeff
return 1 - fn(input, target, reduce_batch_first=True)