|
|
|
|
@ -53,7 +53,16 @@ tags:
|
|
|
|
|
|
|
|
|
|
10. 设矩阵$A = \begin{bmatrix}1 & a_1 & a_1^2 & a_1^3 \\1 & a_2 & a_2^2 & a_2^3 \\1 & a_3 & a_3^2 & a_3^3 \\1 & a_4 & a_4^2 & a_4^3\end{bmatrix},x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},$
|
|
|
|
|
其中常数 $a_1, a_2, a_3, a_4$ 互不相等,则线性方程组 $Ax = b$ 的解为$\underline{\qquad\qquad\qquad\qquad}.$
|
|
|
|
|
11. $A^{k} = 0, k=\underline{\qquad\qquad\qquad\qquad}.$
|
|
|
|
|
11. 矩阵$$A=\begin{bmatrix}
|
|
|
|
|
0 & 0 & \cdots & 1 & 1 & \cdots & 1 & 1 \\
|
|
|
|
|
0 & 0 & \cdots & 0 & 1 & \cdots & 1 & 1 \\
|
|
|
|
|
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
|
|
|
|
|
0 & 0 & \cdots & 0 & 0 & \cdots & 1 & 1 \\
|
|
|
|
|
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 \\
|
|
|
|
|
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
|
|
|
|
|
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\
|
|
|
|
|
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0
|
|
|
|
|
\end{bmatrix}_{n \times n}$$其中第一行有$m$个$0$.若$A^k=0$,则$k$的最小值为____.$A^{k} = 0, k=\underline{\qquad\qquad\qquad\qquad}.$
|
|
|
|
|
12. $\underline{\qquad\qquad\qquad\qquad}$
|
|
|
|
|
|
|
|
|
|
## 三、解答题,共五道,共64分
|
|
|
|
|
|