|
|
|
|
@ -64,4 +64,60 @@
|
|
|
|
|
(C) $a = 2, b = 0, c = 1$;
|
|
|
|
|
(D) $a = 2, b = 1, c = 2$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7. 已知向量 $\alpha_1 = (1,0,-1,0)^T$,$\alpha_2 = (1,1,-1,-1)^T$,$\alpha_3 = (-1,0,1,1)^T$,则向量 $\alpha_1 + 2\alpha_2$ 与 $2\alpha_1 + \alpha_3$ 的内积
|
|
|
|
|
$$
|
|
|
|
|
\langle \alpha_1 + 2\alpha_2,\, 2\alpha_1 + \alpha_3 \rangle = \underline{\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
8. 设二阶矩阵 $A$ 有两个相异特征值,$\alpha_1, \alpha_2$ 是 $A$ 的线性无关的特征向量,且 $A^2 (\alpha_1 + \alpha_2) = \alpha_1 + \alpha_2$,则
|
|
|
|
|
$$
|
|
|
|
|
|A| = \underline{\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
9. 若向量组
|
|
|
|
|
$$
|
|
|
|
|
\alpha_1 = (1,0,1)^T,\quad \alpha_2 = (0,1,1)^T,\quad \alpha_3 = (1,3,5)^T
|
|
|
|
|
$$
|
|
|
|
|
不能由向量组
|
|
|
|
|
$$
|
|
|
|
|
\beta_1 = (1,1,1)^T,\quad \beta_2 = (1,2,3)^T,\quad \beta_3 = (3,4,a)^T
|
|
|
|
|
$$
|
|
|
|
|
线性表示,则
|
|
|
|
|
$$
|
|
|
|
|
a = \underline{\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
10. 设矩阵
|
|
|
|
|
$$
|
|
|
|
|
A = \begin{bmatrix}
|
|
|
|
|
1 & a_1 & a_1^2 & a_1^3 \\
|
|
|
|
|
1 & a_2 & a_2^2 & a_2^3 \\
|
|
|
|
|
1 & a_3 & a_3^2 & a_3^3 \\
|
|
|
|
|
1 & a_4 & a_4^2 & a_4^3
|
|
|
|
|
\end{bmatrix},\quad
|
|
|
|
|
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},\quad
|
|
|
|
|
b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},
|
|
|
|
|
$$
|
|
|
|
|
其中常数 $a_1, a_2, a_3, a_4$ 互不相等,则线性方程组 $Ax = b$ 的解为
|
|
|
|
|
$$
|
|
|
|
|
\underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
11. 若 $n$ 阶实对称矩阵 $A$ 的特征值为
|
|
|
|
|
$$
|
|
|
|
|
\lambda_i = (-1)^i \quad (i=1,2,\dots,n),
|
|
|
|
|
$$
|
|
|
|
|
则
|
|
|
|
|
$$
|
|
|
|
|
A^{100} = \underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
12. 设 $n$ 阶矩阵 $A = [a_{ij}]_{n \times n}$,则二次型
|
|
|
|
|
$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n)^2$
|
|
|
|
|
的矩阵为
|
|
|
|
|
$$
|
|
|
|
|
\underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
---
|