|
|
|
|
@ -202,7 +202,7 @@ k= \underline{\qquad\qquad\qquad\qquad}.
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
12. (20 分)计算 下面的两个$n$阶行列式
|
|
|
|
|
13. (20 分)计算 下面的两个$n$阶行列式
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
K_n = \begin{vmatrix}
|
|
|
|
|
@ -281,89 +281,7 @@ D_n = (-1)^{n-1} \cdot 2^{n-2} \cdot (n+1)
|
|
|
|
|
$$
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
A = (\alpha_1, \alpha_2, \alpha_3) =
|
|
|
|
|
\begin{bmatrix}
|
|
|
|
|
1 & 2 & 1 \\
|
|
|
|
|
0 & 1 & 1 \\
|
|
|
|
|
-1 & 1 & 1
|
|
|
|
|
\end{bmatrix},
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
B = (\beta_1, \beta_2, \beta_3) =
|
|
|
|
|
\begin{bmatrix}
|
|
|
|
|
0 & -1 & 0 \\
|
|
|
|
|
1 & 1 & 2 \\
|
|
|
|
|
1 & 0 & 1
|
|
|
|
|
\end{bmatrix}.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
设 $u$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $x = (1, 2, -3)^T$,在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $y$,则
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
u = (\alpha_1, \alpha_2, \alpha_3) x = (\beta_1, \beta_2, \beta_3) y,
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
即
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
Ax = By.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
因为 $B$ 可逆,所以
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
y = B^{-1} A x.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
用增广矩阵求解 $y$:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
(B, Ax) =
|
|
|
|
|
\begin{bmatrix}
|
|
|
|
|
0 & -1 & 0 & \vert & 2 \\
|
|
|
|
|
1 & 1 & 2 & \vert & -1 \\
|
|
|
|
|
1 & 0 & 1 & \vert & -2
|
|
|
|
|
\end{bmatrix}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
作行初等变换:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
&\rightarrow
|
|
|
|
|
\begin{bmatrix}
|
|
|
|
|
1 & 0 & 1 & \vert & -2 \\
|
|
|
|
|
0 & 1 & 1 & \vert & 1 \\
|
|
|
|
|
0 & -1 & 0 & \vert & 2
|
|
|
|
|
\end{bmatrix} \\
|
|
|
|
|
&\rightarrow
|
|
|
|
|
\begin{bmatrix}
|
|
|
|
|
1 & 0 & 1 & \vert & -2 \\
|
|
|
|
|
0 & 1 & 1 & \vert & 1 \\
|
|
|
|
|
0 & 0 & 1 & \vert & 3
|
|
|
|
|
\end{bmatrix} \\
|
|
|
|
|
&\rightarrow
|
|
|
|
|
\begin{bmatrix}
|
|
|
|
|
1 & 0 & 0 & \vert & -5 \\
|
|
|
|
|
0 & 1 & 0 & \vert & -2 \\
|
|
|
|
|
0 & 0 & 1 & \vert & 3
|
|
|
|
|
\end{bmatrix}.
|
|
|
|
|
\end{aligned}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
因此向量
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
u = \alpha_1 + 2\alpha_2 - 3\alpha_3
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
y = (-5, -2, 3)^T.
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
13. 设$A=\begin{bmatrix}1 & -1 & 0 & -1 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 2 & 6\end{bmatrix},B=\begin{bmatrix}1 & 0 & 1 & 2 \\ 1 & -1 & a & a-1 \\ 2 & -3 & 2 & -2\end{bmatrix}$,向量$\alpha=\begin{bmatrix}0\\2\\3\end{bmatrix},\beta=\begin{bmatrix}1\\0\\-1\end{bmatrix}$.
|
|
|
|
|
|