|
|
|
@ -1,826 +0,0 @@
|
|
|
|
---
|
|
|
|
|
|
|
|
tags:
|
|
|
|
|
|
|
|
- 编写小组
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
## 一、单选题(共5小题,每小题2分,共10分)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.设函数 $f(x)$ 在 $x = 0$ 处可导,且 $f(0) = 0$。若
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(2x) - 3f(x) + f(-x)}{x} = 2,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
则 $f'(0)$ 的值为( )。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A. $-2$
|
|
|
|
|
|
|
|
B. $-1$
|
|
|
|
|
|
|
|
C. $1$
|
|
|
|
|
|
|
|
D. $2$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解析**
|
|
|
|
|
|
|
|
因为 $f(x)$ 在 $x=0$ 处可导且 $f(0)=0$,所以 $f'(0) = \lim\limits_{x \to 0} \frac{f(x)}{x}$ 存在。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
将极限式分解:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{f(2x) - 3f(x) + f(-x)}{x} = \frac{f(2x)}{x} - 3\frac{f(x)}{x} + \frac{f(-x)}{x}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分别计算各项极限:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(2x)}{x} &= 2 \lim_{x \to 0} \frac{f(2x)}{2x} = 2f'(0), \\
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(x)}{x} &= f'(0), \\
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(-x)}{x} &= -\lim_{x \to 0} \frac{f(-x)}{-x} = -f'(0).
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
因此,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(2x) - 3f(x) + f(-x)}{x} = 2f'(0) - 3f'(0) + (-f'(0)) = -2f'(0).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由已知条件 $-2f'(0) = 2$,解得 $f'(0) = -1$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**答案:B**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.求极限 $\displaystyle \lim_{x \to 0} \frac{e^{x^2} \cos x - 1 - \frac{1}{2}x^2}{\ln(1 + x^2) - x^2}$
|
|
|
|
|
|
|
|
A.$-\frac{1}{12}$
|
|
|
|
|
|
|
|
B.$\frac{1}{12}$
|
|
|
|
|
|
|
|
C.$-\frac{1}{6}$
|
|
|
|
|
|
|
|
D$\frac{1}{6}$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分别对分子和分母进行泰勒展开:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分子:
|
|
|
|
|
|
|
|
$$\begin{aligned}
|
|
|
|
|
|
|
|
e^{x^2} \cos x &= \left(1 + x^2 + \frac{x^4}{2} + o(x^4)\right) \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right) \\&= 1 + \frac{1}{2}x^2 + \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{24}\right)x^4 + o(x^4) \\&= 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)
|
|
|
|
|
|
|
|
\end{aligned}$$
|
|
|
|
|
|
|
|
所以 $e^{x^2} \cos x - 1 - \frac{1}{2}x^2 = \frac{1}{24}x^4 + o(x^4)$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分母:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\ln(1+x^2) = x^2 - \frac{1}{2}x^4 + o(x^4)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
所以 $\ln(1+x^2) - x^2 = -\frac{1}{2}x^4 + o(x^4)$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
因此
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{e^{x^2} \cos x - 1 - \frac{1}{2}x^2}{\ln(1 + x^2) - x^2} = \lim_{x \to 0} \frac{\frac{1}{24}x^4 + o(x^4)}{-\frac{1}{2}x^4 + o(x^4)} = \frac{1/24}{-1/2} = -\frac{1}{12}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.已知函数 $f(x) = 2e^x \sin x - 2ax - bx^2$ 与 $g(x) = \int \arctan(x^2) \mathrm{d}x$(取满足 $g(0) = 0$ 的那个原函数)是 $x \to 0$ 过程的同阶无穷小量,则( )。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(A) $a = 1, \, b = 1$
|
|
|
|
|
|
|
|
(B) $a = 1, \, b = 2$
|
|
|
|
|
|
|
|
(C) $a = 2, \, b = 1$
|
|
|
|
|
|
|
|
(D) $a = 2, \, b = 2$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
**法一**:为使 $f(x)$ 与 $g(x)$ 在 $x \to 0$ 时为同阶无穷小,需使二者最低阶非零项的阶数相同。下面分别展开 $f(x)$ 和 $g(x)$ 的麦克劳林公式。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
对于 $f(x)$,利用已知展开式:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + O(x^3), \quad \sin x = x - \frac{x^3}{3!} + O(x^5),
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
则(把大于等于$5$次的项全都放在高阶无穷小里边)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
e^x \sin x = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^3)\right)\left(x - \frac{x^3}{6} + O(x^5)\right) = x + x^2 + \frac{x^3}{3} + O(x^5).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
因此
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
2e^x \sin x = 2x + 2x^2 + \frac{2}{3}x^3 + O(x^5).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
代入 $f(x)$ 得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f(x) = 2x + 2x^2 + \frac{2}{3}x^3 - 2ax - bx^2 + O(x^5) = (2 - 2a)x + (2 - b)x^2 + \frac{2}{3}x^3 + O(x^5).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
对于 $g(x)$,由 $g(0)=0$ 及 $\arctan(x^2)$ 的展开:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\arctan(x^2) = x^2 - \frac{x^6}{3} + O(x^{10}),
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
积分得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
g(x) = \int_0^x \arctan(t^2) \mathrm{d}t = \frac{x^3}{3} - \frac{x^7}{21} + O(x^{11}) = \frac{1}{3}x^3 + O(x^7).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
可见 $g(x)$ 是 $x \to 0$ 时的三阶无穷小,其主项为 $\dfrac{1}{3}x^3$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
为使 $f(x)$ 也是三阶无穷小(即与 $g(x)$ 同阶),$f(x)$ 中 $x$ 和 $x^2$ 的系数必须为零:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
2 - 2a = 0, \quad 2 - b = 0,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
解得 $a = 1$, $b = 2$。此时
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f(x) = \frac{2}{3}x^3 + O(x^5),
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
与 $g(x)$ 同阶(但不等价,因为系数比值为 $2$)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
因此正确选项为 (B)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**法二**:洛必达+泰勒
|
|
|
|
|
|
|
|
先考虑两者之比的极限$$\lim\limits_{x\to0}\frac{f(x)}{g(x)}=\lim\limits_{x\to0}\frac{f'(x)}{g'(x)}=\lim\limits_{x\to0}\frac{2\mathrm{e}^x(\sin x+\cos x)-2a-2bx}{\arctan x^2}$$由麦克劳林公式得$$\begin{aligned}\mathrm{e}^x&=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+O(x^3)\\\sin x&=x-\frac{x^3}{6}+O(x^3)\\\cos x&=1-\frac{x^2}{2}+O(x^3)\end{aligned}$$于是(把所有大于3次的项都放在高阶无穷小里面,这样可以简化计算)$$\mathrm{e}^x(\sin x+\cos x)=1+2x+x^2+O(x^3)$$从而极限式的分子等于$$2-2a+(4-2b)+2x^2+O(x^3).$$又由麦克劳林公式得$$\arctan x=x-\frac{x^3}{6}+O(x^3)$$故分母为$$x^2-\frac{x^6}{6}+O(x^6)=x^2+O(x^3).$$上面的分子分母带入极限式中得$$\lim\limits_{x\to0}\frac{2-2a+(4-2b)+2x^2+O(x^3)}{x^2+O(x^3)}$$要让上式为有限值且不为$0$,只有$$\begin{cases}2-2a&=0\\4-2b&=0\end{cases}\implies\begin{cases}a&=1\\b&=2\end{cases}$$故选(B)
|
|
|
|
|
|
|
|
**答案:** (B)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.下列级数中绝对收敛的是( )。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(A) $\displaystyle \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n+(-1)^n}}$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(B) $\displaystyle \sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(C) $\displaystyle \sum_{n=1}^{\infty} \frac{n! \cdot 3^n}{n^n}$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(D) $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解析**
|
|
|
|
|
|
|
|
- **(A)** g根据莱布尼兹判别法,级数条件收敛,但其绝对值接近于$p-$级数($p=\frac{1}{2}$)的情形,故不绝对收敛。
|
|
|
|
|
|
|
|
- **(B)** 由于 $(\ln n)^{\ln n} = n^{\ln \ln n}$,当 $n$ 足够大时,$\ln \ln n > 2$,故 $\frac{1}{(\ln n)^{\ln n}} < \frac{1}{n^2}$,由 $p$-级数收敛知原级数绝对收敛。
|
|
|
|
|
|
|
|
- **(C)** 用比值判别法:$\lim\limits_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim\limits_{n\to\infty} \frac{3}{(1+1/n)^n} = \frac{3}{e} > 1$,发散。
|
|
|
|
|
|
|
|
- **(D)** 由于 $n^{1/n} \to 1$,故 $\frac{1}{n^{1+1/n}} \sim \frac{1}{n}$,与调和级数比较,发散。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**答案:(B)**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.一个倒置的圆锥形容器(顶点在下,底面在上),高度为 10 米,底面半径为 5 米。容器内装有水,水从底部的一个小孔(面积为 $0.1\pi$ 平方米)流出,流速为 $v = 0.6\sqrt{2gh}$ 米/秒,其中 $g = 10$ 米/秒$^2$。同时,以恒定速率 $Q = 0.3\pi$ 立方米/秒从顶部注入水。当水面高度为 5 米时,水面高度的瞬时变化率是多少?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
选项:
|
|
|
|
|
|
|
|
A. $-0.048$ 米/秒
|
|
|
|
|
|
|
|
B. $-0.024$ 米/秒
|
|
|
|
|
|
|
|
C. 0
|
|
|
|
|
|
|
|
D. 0.048 米/秒
|
|
|
|
|
|
|
|
**解析:**
|
|
|
|
|
|
|
|
设水面高度为 $h$(从圆锥顶点算起)。由相似关系,水面半径
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
r = \frac{R}{H}h = \frac{5}{10}h = 0.5h,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
水的体积为
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (0.5h)^2 h = \frac{1}{12}\pi h^3.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
对时间 $t$ 求导,得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{4}\pi h^2 \frac{\mathrm{d}h}{\mathrm{d}t}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
另一方面,体积变化率由注入速率 $Q$ 和流出速率 $A \cdot v$ 决定:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{\mathrm{d}V}{\mathrm{d}t} = Q - A \cdot v = 0.3\pi - 0.1\pi \cdot 0.6\sqrt{2gh}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
代入 $h=5$,$g=10$,则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\sqrt{2gh} = \sqrt{2 \cdot 10 \cdot 5} = \sqrt{100} = 10,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
A \cdot v = 0.1\pi \cdot 0.6 \cdot 10 = 0.6\pi,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{dV}{dt} = 0.3\pi - 0.6\pi = -0.3\pi.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
代入微分式:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{1}{4}\pi \cdot 5^2 \cdot \frac{\mathrm{d}h}{\mathrm{d}t} = -0.3\pi \quad \Rightarrow \quad \frac{25}{4}\pi \frac{\mathrm{d}h}{\mathrm{d}t} = -0.3\pi.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
解得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{\mathrm{d}h}{\mathrm{d}t} = -0.3 \times \frac{4}{25} = -0.048 \ \text{米/秒}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
因此水面高度以每秒 $0.048$ 米的速度下降,故选 A。
|
|
|
|
|
|
|
|
## 二、填空题(共5小题,每小题2分,共10分)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.设 $y = \arctan x$,则 $y^{(n)}(0)=\_\_\_\_.$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**分析**
|
|
|
|
|
|
|
|
逐次求导以找到 $n$ 阶导数的规律。由于 $y' = \frac{1}{1 + x^2}$,即 $(1 + x^2)y' = 1$,故想到用莱布尼茨公式。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法1**
|
|
|
|
|
|
|
|
因为 $y' = \frac{1}{1 + x^2}$,所以 $(1 + x^2)y' = 1$。
|
|
|
|
|
|
|
|
上述两端对 $x$ 求 $n$ 阶导数,并利用莱布尼茨公式,得
|
|
|
|
|
|
|
|
$$\sum_{k=0}^{n} C_n^k (1 + x^2)^{(k)} (y')^{(n-k)} = (1 + x^2)y^{(n+1)} + 2nxy^{(n)} + n(n-1)y^{(n-1)} = 0.$$
|
|
|
|
|
|
|
|
在上式中令 $x = 0$,得
|
|
|
|
|
|
|
|
$$y^{(n+1)}(0) = -n(n-1)y^{(n-1)}(0).$$
|
|
|
|
|
|
|
|
由此递推公式,再加上 $y'(0) = 1, y''(0) = 0$,可得:
|
|
|
|
|
|
|
|
$$y^{(n)}(0) = \begin{cases} 0, & n\text{为偶数} \\ (-1)^n (n-1)!, & n\text{为奇数} \end{cases}.$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法2**
|
|
|
|
|
|
|
|
因为 $y' = \frac{1}{1 + x^2} = \sum\limits_{n=0}^{\infty} (-1)^n x^{2n}, (|x| < 1)$,
|
|
|
|
|
|
|
|
所以 (积分得)
|
|
|
|
|
|
|
|
$$y = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, (|x| < 1).$$
|
|
|
|
|
|
|
|
又知 $y(x)$ 在点 $x = 0$ 处的麦克劳林展开式为
|
|
|
|
|
|
|
|
$$y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^n.$$
|
|
|
|
|
|
|
|
比较系数可得
|
|
|
|
|
|
|
|
$$y^{(n)}(0) = \begin{cases} 0, & n\text{为偶数} \\ (-1)^n (n-1)!, & n\text{为奇数} \end{cases}.$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法3**
|
|
|
|
|
|
|
|
由 $y = \arctan x$,得 $x = \tan y$,则
|
|
|
|
|
|
|
|
$$y' = \frac{1}{1 + x^2} = \frac{1}{1 + \tan^2 y} = \cos^2 y.$$
|
|
|
|
|
|
|
|
利用复合函数求导法则:
|
|
|
|
|
|
|
|
$$y'' = -2 \cos y \sin y \cdot y' = -\sin(2y) \cos^2 y = \cos^2 y \sin 2\left( y + \frac{\pi}{2} \right),$$
|
|
|
|
|
|
|
|
$$\begin{aligned}y''' &= \left[ -2 \cos y \sin y \sin 2\left( y + \frac{\pi}{2} \right) + 2 \cos^2 y \cos 2\left( y + \frac{\pi}{2} \right) \right] y'\\& = 2 \cos^3 y \cos\left( y + \frac{\pi}{2} \right) y' + 2 \cos^3 y \sin 3\left( y + \frac{\pi}{2} \right),\end{aligned}$$
|
|
|
|
|
|
|
|
$$y^{(4)} = 6 \cos^4 y \cos\left( y + \frac{\pi}{2} \right) y' + 3 \cos^4 y \sin 4\left( y + \frac{\pi}{2} \right).$$
|
|
|
|
|
|
|
|
由此归纳出
|
|
|
|
|
|
|
|
$$y^{(n)} = (n-1)! \cos^n y \sin n\left( y + \frac{\pi}{2} \right).$$
|
|
|
|
|
|
|
|
下面用归纳法证明以上结论:
|
|
|
|
|
|
|
|
当 $n = 1$ 时结论成立;
|
|
|
|
|
|
|
|
假设 $n = k$ 时结论成立,则当 $n = k + 1$ 时,
|
|
|
|
|
|
|
|
$$\begin{aligned} y^{(k+1)} &= (y^{(k)})' \\ &= (k-1)! \left[ -k \cos^{k+1} y \sin y \sin k\left( y + \frac{\pi}{2} \right) + k \cos^k y \cos k\left( y + \frac{\pi}{2} \right) \right] y' \\ &= k \cos^{k+1} y \cos\left( y + \frac{\pi}{2} \right) y' + k \cos^{k+1} y \sin (k+1)\left( y + \frac{\pi}{2} \right). \end{aligned}$$
|
|
|
|
|
|
|
|
由于 $y(0) = \arctan 0 = 0, \cos 0 = 1$,因此
|
|
|
|
|
|
|
|
$$y^{(n)}(0) = (n-1)! \sin \frac{n\pi}{2}.$$
|
|
|
|
|
|
|
|
根据 $\sin \frac{n\pi}{2}$ 的取值($n$ 为偶数时为 $0$,$n=4k+1$ 时为 $1$,$n=4k+3$ 时为 $-1$),可得到与方法1、2相同的结果。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.已知 $f(x)$ 是三次多项式,且有 $\lim\limits_{x \to 2a} \frac{f(x)}{x-2a} = \lim\limits_{x \to 4a} \frac{f(x)}{x-4a} = 1$,则$\lim\limits_{x \to 3a} \frac{f(x)}{x-3a}=\_\_\_.$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**分析**
|
|
|
|
|
|
|
|
由已知的两个极限式可确定 $f(x)$ 的两个一次因子以及两个待定系数,从而完全确定 $f(x)$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解**
|
|
|
|
|
|
|
|
由已知有 $\lim\limits_{x \to 2a} f(x) = \lim\limits_{x \to 4a} f(x) = 0$。
|
|
|
|
|
|
|
|
由于 $f(x)$ 处处连续,故 $f(2a) = f(4a) = 0$。
|
|
|
|
|
|
|
|
因此 $f(x)$ 含有因式 $(x-2a)(x-4a)$,可设
|
|
|
|
|
|
|
|
$$f(x) = (Ax + B)(x - 2a)(x - 4a).$$
|
|
|
|
|
|
|
|
由条件:
|
|
|
|
|
|
|
|
$$\lim_{x \to 2a} \frac{f(x)}{x-2a} = \lim_{x \to 2a} (Ax + B)(x - 4a) = (2aA + B)(-2a) = 1,$$
|
|
|
|
|
|
|
|
$$\lim_{x \to 4a} \frac{f(x)}{x-4a} = \lim_{x \to 4a} (Ax + B)(x - 2a) = (4aA + B)(2a) = 1.$$
|
|
|
|
|
|
|
|
解方程组:
|
|
|
|
|
|
|
|
$$\begin{cases} (2aA + B)(-2a) = 1 \\ (4aA + B)(2a) = 1 \end{cases} \Rightarrow \begin{cases} -4a^2A - 2aB = 1 \\ 8a^2A + 2aB = 1 \end{cases}.$$
|
|
|
|
|
|
|
|
相加得 $4a^2A = 2$,故 $A = \frac{1}{2a^2}$;代入第一个方程得 $-4a^2 \cdot \frac{1}{2a^2} - 2aB = 1$,即 $-2 - 2aB = 1$,解得 $B = -\frac{3}{2a}$。
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$f(x) = \left( \frac{1}{2a^2}x - \frac{3}{2a} \right)(x - 2a)(x - 4a) = \frac{1}{2a^2}(x - 3a)(x - 2a)(x - 4a).$$
|
|
|
|
|
|
|
|
最后,
|
|
|
|
|
|
|
|
$$\begin{aligned}\lim_{x \to 3a} \frac{f(x)}{x-3a} &= \lim_{x \to 3a} \frac{\frac{1}{2a^2}(x-3a)(x-2a)(x-4a)}{x-3a} \\&= \frac{1}{2a^2} \cdot (3a-2a)(3a-4a) \\&= \frac{1}{2a^2} \cdot a \cdot (-a) \\&= -\frac{1}{2}.\end{aligned}$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**答案**:$\displaystyle \lim_{x \to 3a} \frac{f(x)}{x-3a} = -\frac{1}{2}$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.若级数$\sum\limits_{n=1}^{\infty}\frac{n^p}{(-1)^n}\sin(\frac{1}{\sqrt{n}})$绝对收敛,则常数$p$的取值范围是$\underline{\quad\quad\quad}.$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
解:首先,考虑级数$\sum\limits_{n=1}^{\infty}|\frac{n^p}{(-1)^n}\sin(\frac{1}{\sqrt{n}})|=\sum\limits_{n=1}^{\infty}{n^p}|\sin(\frac{1}{\sqrt{n}})|$
|
|
|
|
|
|
|
|
当$n\to\infty$时,$\frac{1}{\sqrt{n}}\to 0$,此时有等价无穷小关系:$\sin(\frac{1}{\sqrt{n}}) \sim \frac{1}{\sqrt{n}}.$
|
|
|
|
|
|
|
|
因此,级数的通项可以近似为$\frac{1}{n^p}\frac{1}{\sqrt{n}}=\frac{1}{n^{p+\frac{1}{2}}}$
|
|
|
|
|
|
|
|
根据**p级数**的收敛性结论,级数$\sum\limits_{n=1}^{\infty}\frac{1}{n^{p+\frac{1}{2}}}$当且仅当$p+\frac{1}{2}>1$时收敛,即$p>\frac{1}{2}$,
|
|
|
|
|
|
|
|
所以,$p\in(\frac{1}{2},+\infty)$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.求不定积分$\int{x^3\sqrt{4-x^2}\mathrm{d}x}=\underline{\quad\quad\quad}.$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
方法1:
|
|
|
|
|
|
|
|
令$x=2\sin t$,则$\mathrm{d}x=2\cos t \mathrm{d}t$,
|
|
|
|
|
|
|
|
$$\begin{align}\int{x^3\sqrt{4-x^2}\mathrm{d}x}&=\int{(2\sin t)^3\sqrt{4-4\sin^2 t} \cdot 2\cos t\mathrm{d}t}\\
|
|
|
|
|
|
|
|
&=32\int{\sin^3t\cos^2t\mathrm{d}t}\\
|
|
|
|
|
|
|
|
&=32\int{\sin t(1-\cos^2t)\cos^2t\mathrm{d}t}\\
|
|
|
|
|
|
|
|
&=-32\int{(\cos^2t-cos^4t)\mathrm{d}\cos t}\\
|
|
|
|
|
|
|
|
&=-32(\frac{\cos^3t}{3}-\frac{cos^5t}{5})+C\\
|
|
|
|
|
|
|
|
&=-\frac{4}{3}(\sqrt{4-x^2})^3+\frac{1}{5}(\sqrt{4-x^2})^5+C
|
|
|
|
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
方法2:
|
|
|
|
|
|
|
|
令$\sqrt{4-x^2}=t$,$x^2=4-t^2$,$x\mathrm{d}x=-t\mathrm{d}t$,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{align}
|
|
|
|
|
|
|
|
\int{x^3\sqrt{4-x^2}\mathrm{d}x}&=-\int{(4-t^2)t^2\mathrm{d}t}\\
|
|
|
|
|
|
|
|
&=\frac{t^5}{5}-\frac{4t^3}{3}+C\\
|
|
|
|
|
|
|
|
&=\frac{(\sqrt{4-x^2})^5}{5}-\frac{4(\sqrt{4-x^2})^3}{3}+C
|
|
|
|
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.设$y=f(x)$由$\begin{cases}x=t^2+2t\\t^2-y+a\sin y=1\end{cases}$确定,若$y(0)=b$,$\frac{\mathrm{d}^2y}{\mathrm{d}x^2}|_{t=0}=\underline{\quad\quad\quad}.$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解**:
|
|
|
|
|
|
|
|
方程两边对$t$求导,得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{cases}
|
|
|
|
|
|
|
|
\frac{\mathrm{d}x}{\mathrm{d}t}=2t+2\\
|
|
|
|
|
|
|
|
2t-\frac{\mathrm{d}y}{\mathrm{d}t}+a\frac{\mathrm{d}y}{\mathrm{d}t}\cos y=0
|
|
|
|
|
|
|
|
\end{cases}
|
|
|
|
|
|
|
|
\Rightarrow
|
|
|
|
|
|
|
|
\begin{cases}
|
|
|
|
|
|
|
|
\frac{\mathrm{d}x}{\mathrm{d}t}=2(t+1)\\
|
|
|
|
|
|
|
|
\frac{\mathrm{d}y}{\mathrm{d}t}=\frac{2t}{1-a\cos y}
|
|
|
|
|
|
|
|
\end{cases}
|
|
|
|
|
|
|
|
\Rightarrow
|
|
|
|
|
|
|
|
\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{t}{(t+1)(1-a\cos y)}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}x}=\frac{\frac{\mathrm{d}\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}=\frac{\frac{(1-a\cos y)-at(t+1)\frac{\mathrm{d}y}{\mathrm{d}t}\sin y}{(t+1)^2(1-a\cos y)^2}}{2(t+1)}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
注意到$y|_{t=0}=b,\frac{\mathrm{d}y}{\mathrm{d}t}|_{t=0}=0$,得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{\mathrm{d}^2y}{\mathrm{d}x^2}|_{t=0}=\frac{1}{2(1-a\cos b)}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 三、解答题(共11小题,共80分)
|
|
|
|
|
|
|
|
1.求下列不定积分(提示,换元),其中 $a > 0$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1) $\displaystyle \int \frac{x^2}{\sqrt{a^2 - x^2}} \mathrm{d}x$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
令 $x = a \sin t$,有$\mathrm{d}x=a\cos t\mathrm{d}t$,则:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
\int \frac{x^2}{\sqrt{a^2 - x^2}} \mathrm{d}x &= \int \frac{a^2 \sin^2 t}{a \cos t} \cdot a \cos t \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= a^2 \int \sin^2 t \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \frac{a^2}{2} \int (1 - \cos 2t) \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \frac{a^2}{2} \left( t - \frac{1}{2} \sin 2t \right) + C \\
|
|
|
|
|
|
|
|
&= \frac{a^2}{2} \arcsin \frac{x}{a} - \frac{x}{2} \sqrt{a^2 - x^2} + C
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2) $\displaystyle \int \frac{\sqrt{x^2 + a^2}}{x^2} \mathrm{d}x$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
**方法一:** 令 $x = a \tan t$,则:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
\int \frac{\sqrt{x^2 + a^2}}{x^2} \mathrm{d}x &= \int \frac{a \sec t}{a^2 \tan^2 t} \cdot a \sec^2 t \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \int \frac{\sec^3 t}{\tan^2 t} \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \int \frac{1}{\sin^2 t \cos t} \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \int \frac{\sin^2 t + \cos^2 t}{\sin^2 t \cos t} \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \int \sec t \, \mathrm{d}t + \int \frac{\cos t}{\sin^2 t} \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \ln |\sec t + \tan t| - \frac{1}{\sin t} + C \\
|
|
|
|
|
|
|
|
&= \ln (x + \sqrt{x^2 + a^2}) - \frac{\sqrt{x^2 + a^2}}{x} + C
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法二:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
\int \frac{\sqrt{x^2 + a^2}}{x^2} \mathrm{d}x &= \int \frac{x^2 + a^2}{x^2 \sqrt{x^2 + a^2}} \mathrm{d}x \\
|
|
|
|
|
|
|
|
&= \int \frac{1}{\sqrt{x^2 + a^2}} \mathrm{d}x + a^2 \int \frac{1}{x^2 \sqrt{x^2 + a^2}} \mathrm{d}x \\
|
|
|
|
|
|
|
|
&= \ln (x + \sqrt{x^2 + a^2}) - \frac{\sqrt{x^2 + a^2}}{x} + C
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3) $\displaystyle \int \frac{\sqrt{x^2 - a^2}}{x} \mathrm{d}x$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
令 $x = a \sec t$,则:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
\int \frac{\sqrt{x^2 - a^2}}{x} \mathrm{d}x &= \int \frac{a \tan t}{a \sec t} \cdot a \sec t \tan t \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= a \int \tan^2 t \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= a \int (\sec^2 t - 1) \, \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= a (\tan t - t) + C \\
|
|
|
|
|
|
|
|
&= \sqrt{x^2 - a^2} - a \arccos \frac{a}{x} + C
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(4) $\displaystyle \int \sqrt{1 + e^x} \mathrm{d}x$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
令 $t = \sqrt{1 + e^x}$,则 $e^x = t^2 - 1$,$x = \ln(t^2 - 1)$,$\mathrm{d}x = \frac{2t}{t^2 - 1} \mathrm{d}t$:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
\int \sqrt{1 + e^x} \mathrm{d}x &= \int t \cdot \frac{2t}{t^2 - 1} \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= \int \frac{2t^2}{t^2 - 1} \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= 2 \int \left( 1 + \frac{1}{t^2 - 1} \right) \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= 2 \int 1 \, \mathrm{d}t + \int \left( \frac{1}{t-1} - \frac{1}{t+1} \right) \mathrm{d}t \\
|
|
|
|
|
|
|
|
&= 2t + \ln \left| \frac{t-1}{t+1} \right| + C \\
|
|
|
|
|
|
|
|
&= 2 \sqrt{1 + e^x} + \ln \frac{\sqrt{1 + e^x} - 1}{\sqrt{1 + e^x} + 1} + C
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.求极限 $\displaystyle \lim_{x \to 0} \frac{e^{x^2} - 1 - \ln\left(x^2 + 1\right)}{x^3 \arcsin x}$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
当 $x \to 0$ 时,利用等价无穷小替换和泰勒展开:9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分母:$x^3 \arcsin x \sim x^3 \cdot x = x^4$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分子:$e^{x^2} - 1 - \ln(1+x^2) = \left(1+x^2+\frac{x^4}{2}+o(x^4)\right) - 1 - \left(x^2-\frac{x^4}{2}+o(x^4)\right) = x^4 + o(x^4)$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
所以
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{e^{x^2} - 1 - \ln\left(x^2 + 1\right)}{x^3 \arcsin x} = \lim_{x \to 0} \frac{x^4 + o(x^4)}{x^4} = 1
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.设 $f(x)$ 在 $[0, \frac{1}{2}]$ 上二阶可导,$f(0) = f'(0)$,$f\left(\frac{1}{2}\right) = 0$。
|
|
|
|
|
|
|
|
证明:存在 $\xi \in (0, \frac{1}{2})$,使得 $f''(\xi) = \frac{3f'(\xi)}{1-2\xi}$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**证明:**
|
|
|
|
|
|
|
|
构造辅助函数 $g(x) = (1-2x)^{3/2} f'(x)$,$x \in [0, \frac{1}{2}]$。
|
|
|
|
|
|
|
|
由于 $f$ 二阶可导,故 $g$ 在 $[0, \frac{1}{2}]$ 上连续,在 $(0, \frac{1}{2})$ 内可导。
|
|
|
|
|
|
|
|
计算 $g$ 的导数:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
g'(x) &= (1-2x)^{3/2} f''(x) + \frac{3}{2}(1-2x)^{1/2} \cdot (-2) \cdot f'(x) \\
|
|
|
|
|
|
|
|
&= (1-2x)^{1/2} \left[ (1-2x) f''(x) - 3f'(x) \right]
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
当 $x \in (0, \frac{1}{2})$ 时,$(1-2x)^{1/2} > 0$,因此 $g'(x) = 0$ 当且仅当:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
(1-2x) f''(x) - 3f'(x) = 0 \quad \text{即} \quad f''(x) = \frac{3f'(x)}{1-2x}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
所以只需证明存在 $\xi \in (0, \frac{1}{2})$ 使得 $g'(\xi) = 0$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由已知条件:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
g(0) = (1-0)^{3/2} f'(0) = f'(0) = f(0), \quad g\left(\frac{1}{2}\right) = (1-1)^{3/2} f'\left(\frac{1}{2}\right) = 0
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
分两种情况讨论:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. **若 $f'(0) = 0$**
|
|
|
|
|
|
|
|
此时 $g(0) = 0$,所以 $g(0) = g\left(\frac{1}{2}\right) = 0$。由罗尔定理,存在 $\xi \in (0, \frac{1}{2})$ 使得 $g'(\xi) = 0$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. **若 $f'(0) \neq 0$**
|
|
|
|
|
|
|
|
对 $f$ 在 $[0, \frac{1}{2}]$ 上应用拉格朗日中值定理,存在 $c \in (0, \frac{1}{2})$ 使得:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f'(c) = \frac{f\left(\frac{1}{2}\right) - f(0)}{\frac{1}{2} - 0} = \frac{0 - f(0)}{\frac{1}{2}} = -2f(0) = -2f'(0)
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由于 $f'(0) \neq 0$,故 $f'(c) \neq 0$ 且与 $f'(0)$ 异号。
|
|
|
|
|
|
|
|
计算 $g(c) = (1-2c)^{3/2} f'(c)$,因为 $(1-2c)^{3/2} > 0$,所以 $g(c)$ 与 $f'(c)$ 同号,从而 $g(c)$ 与 $g(0) = f'(0)$ 异号。
|
|
|
|
|
|
|
|
由连续函数的介值定理,存在 $d \in (0, c)$ 使得 $g(d) = 0$。
|
|
|
|
|
|
|
|
在区间 $[d, \frac{1}{2}]$ 上,$g(d) = g\left(\frac{1}{2}\right) = 0$,由罗尔定理,存在 $\xi \in (d, \frac{1}{2}) \subset (0, \frac{1}{2})$ 使得 $g'(\xi) = 0$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
综上所述,无论何种情况,均存在 $\xi \in (0, \frac{1}{2})$ 使得 $g'(\xi) = 0$,从而有:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f''(\xi) = \frac{3f'(\xi)}{1-2\xi}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
原命题得证。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.求 $y = e^{ax} \sin bx$ 的 $n$ 阶导数 $y^{(n)}\text{,其中a,b为非零常数}$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法一:逐阶求导归纳法**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
y' = a e^{ax} \sin bx + b e^{ax} \cos bx
|
|
|
|
|
|
|
|
= e^{ax} \bigl( a \sin bx + b \cos bx \bigr),
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
令
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\varphi = \arctan \frac{b}{a},
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
a \sin bx + b \cos bx = \sqrt{a^2 + b^2} \, \sin(bx + \varphi).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
y' = e^{ax} \cdot \sqrt{a^2 + b^2} \, \sin(bx + \varphi).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
同理,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
y'' = \sqrt{a^2 + b^2} \cdot e^{ax} \bigl[ a \sin(bx + \varphi) + b \cos(bx + \varphi) \bigr]
|
|
|
|
|
|
|
|
= (a^2 + b^2) e^{ax} \sin(bx + 2\varphi).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
依此类推,由归纳法可得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
y^{(n)} = (a^2 + b^2)^{n/2} \, e^{ax} \sin(bx + n\varphi),
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
其中
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\varphi = \arctan \frac{b}{a}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
下用数学归纳法证明.设$y^{(n)}=(a^2+b^2)^{n/2}\mathrm{e}^{ax}\sin(bx+n\varphi)$,则$$\begin{aligned}y^{(n+1)}&=(a^2+b^2)^{n/2}(a\mathrm{e}^{ax}\sin(bx+n\varphi)+b\mathrm{e}^{ax}\cos(bx+n\varphi))\\&=(a^2+b^2)^{(n+1)/2}\mathrm{e}^{ax}\sin(bx+(n+1)\varphi)\end{aligned}$$得证.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法二:欧拉公式法**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
设
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
u = e^{ax} \cos bx, \quad v = e^{ax} \sin bx,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
u + \mathrm{i}v = e^{ax} (\cos bx + \mathrm{i} \sin bx) = e^{(a + b\mathrm{i})x}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
求 $n$ 阶导数:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
u^{(n)} + \mathrm{i} v^{(n)} = \bigl[ e^{(a + b\mathrm{i})x} \bigr]^{(n)}
|
|
|
|
|
|
|
|
= (a + b\mathrm{i})^n e^{(a + b\mathrm{i})x}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
记
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
a + bi = \sqrt{a^2 + b^2} \, e^{\mathrm{i}\varphi},
|
|
|
|
|
|
|
|
\quad \varphi = \arctan \frac{b}{a},
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
(a + b\mathrm{i})^n = (a^2 + b^2)^{n/2} e^{n\varphi\mathrm{i}}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
u^{(n)} + \mathrm{i} v^{(n)}
|
|
|
|
|
|
|
|
= (a^2 + b^2)^{n/2} e^{ n\varphi\mathrm{i}} \cdot e^{ax} e^{\mathrm{i}bx}
|
|
|
|
|
|
|
|
= (a^2 + b^2)^{n/2} e^{ax} e^{\mathrm{i}(bx + n\varphi)}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
取虚部,即得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\bigl( e^{ax} \sin bx \bigr)^{(n)}
|
|
|
|
|
|
|
|
= (a^2 + b^2)^{n/2} e^{ax} \sin(bx + n\varphi).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
类似可得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\bigl( e^{ax} \cos bx \bigr)^{(n)}
|
|
|
|
|
|
|
|
= (a^2 + b^2)^{n/2} e^{ax} \cos(bx + n\varphi).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.将函数 $f(x) = x^2 e^x + x^6$ 展开成六阶带佩亚诺余项的麦克劳林公式,并求 $f^{(6)}(0)$ 的值。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解:**
|
|
|
|
|
|
|
|
已知 $e^x$ 的麦克劳林展开为:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + o(x^6).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
x^2 e^x &= x^2 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + o(x^6)\right)\\[1em] &= x^2 + x^3 + \frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \frac{x^7}{5!} + \frac{x^8}{6!} + o(x^8).
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
由于我们只关心六阶展开,保留到 $x^6$ 项,$x^7$ 及更高次项可并入 $o(x^6)$,故
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
x^2 e^x = x^2 + x^3 + \frac{x^4}{2} + \frac{x^5}{6} + \frac{x^6}{24} + o(x^6).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
f(x) &= x^2 e^x + x^6\\[1em] &= x^2 + x^3 + \frac{x^4}{2} + \frac{x^5}{6} + \frac{x^6}{24} + x^6 + o(x^6)\\[1em] &= x^2 + x^3 + \frac{x^4}{2} + \frac{x^5}{6} + \frac{25}{24}x^6 + o(x^6).
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
这就是 $f(x)$ 的六阶带佩亚诺余项的麦克劳林公式。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由泰勒展开的唯一性,$x^6$ 项的系数为 $\frac{f^{(6)}(0)}{6!}$,即
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\frac{f^{(6)}(0)}{6!} = \frac{25}{24}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
所以
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f^{(6)}(0) = 6! \times \frac{25}{24} = 720 \times \frac{25}{24} = 30 \times 25 = 750.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**答案:**
|
|
|
|
|
|
|
|
展开式为 $f(x) = x^2 + x^3 + \frac{1}{2}x^4 + \frac{1}{6}x^5 + \frac{25}{24}x^6 + o(x^6)$,$f^{(6)}(0) = 750$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.已知对于一数列$\{\alpha_n\}$,若满足$$\forall N\in\mathbb{N}_+,\exists\delta>0,当n>N时 ,有,\lvert \alpha_{n+1}-\alpha_n\rvert<\delta,$$则数列$\{\alpha_n\}$收敛.满足以上条件的数列称为柯西数列.设函数 $f(x)$ 在 $(-\infty, +\infty)$ 内可导,且 $|f'(x)| \leq r$ ($0 < r < 1$)。取实数 $x_1$,记
|
|
|
|
|
|
|
|
$$x_{n+1} = f(x_n), \quad n = 1, 2, \cdots.$$
|
|
|
|
|
|
|
|
证明:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)数列 $\{x_n\}$ 收敛(记 $\lim\limits_{n \to \infty} x_n = a$);
|
|
|
|
|
|
|
|
(2)方程 $f(x) = x$ 有唯一实根 $x = a$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**证明:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)首先证明 $\{x_n\}$ 是柯西数列.对任意 $n \geq 1$,由拉格朗日中值定理,存在 $\xi_n$ 介于 $x_n$ 和 $x_{n-1}$ 之间,使得
|
|
|
|
|
|
|
|
$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| = |f'(\xi_n)| \cdot |x_n - x_{n-1}| \leq r |x_n - x_{n-1}|.$$
|
|
|
|
|
|
|
|
反复应用此不等式,得
|
|
|
|
|
|
|
|
$$|x_{n+1} - x_n| \leq r |x_n - x_{n-1}| \leq r^2 |x_{n-1} - x_{n-2}| \leq \cdots \leq r^{n-1} |x_2 - x_1|.$$
|
|
|
|
|
|
|
|
于是对任意正整数 $m > n$,有
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
|x_m - x_n| &\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \cdots + |x_{n+1} - x_n| \\[1em]
|
|
|
|
|
|
|
|
&\leq (r^{m-2} + r^{m-3} + \cdots + r^{n-1}) |x_2 - x_1| \\[1em]
|
|
|
|
|
|
|
|
&= r^{n-1} \cdot \frac{1 - r^{m-n}}{1 - r} \cdot |x_2 - x_1| \\[1em]
|
|
|
|
|
|
|
|
&\leq \frac{r^{n-1}}{1 - r} |x_2 - x_1|.
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
因为 $0 < r < 1$,所以当 $n \to \infty$ 时,$r^{n-1} \to 0$,从而对任意 $\varepsilon > 0$,存在 $N$,当 $m > n > N$ 时 $|x_m - x_n| < \varepsilon$。故 $\{x_n\}$ 是柯西数列,因此在实数域中收敛,记 $\lim_{n \to \infty} x_n = a$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2)由于 $f$ 可导,故连续。在递推式 $x_{n+1} = f(x_n)$ 两边取极限 $n \to \infty$,得
|
|
|
|
|
|
|
|
$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(a),$$
|
|
|
|
|
|
|
|
即 $a$ 是方程 $f(x) = x$ 的一个实根。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
下证唯一性。假设另有 $b \neq a$ 满足 $f(b) = b$,则由拉格朗日中值定理,存在 $\eta$ 介于 $a$ 和 $b$ 之间,使得
|
|
|
|
|
|
|
|
$$|a - b| = |f(a) - f(b)| = |f'(\eta)| \cdot |a - b| \leq r |a - b|.$$
|
|
|
|
|
|
|
|
由于 $|a - b| > 0$,两边除以 $|a - b|$ 得 $1 \leq r$,与 $0 < r < 1$ 矛盾。故方程 $f(x) = x$ 有唯一实根 $x = a$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
综上所述,数列 $\{x_n\}$ 收敛于 $a$,且 $a$ 是方程 $f(x) = x$ 的唯一实根。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7.设在$\mathbb{R}$上的连续函数$f(x)$ 满足 $\sin f(x) - \frac{1}{3} \sin f\left(\frac{1}{3}x\right) = x$,求 $f(x)$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解**
|
|
|
|
|
|
|
|
令 $g(x) = \sin f(x)$,则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
g(x) - \frac{1}{3} g\left(\frac{1}{3}x\right) = x.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
依次将 $x$ 替换为 $\frac{x}{3}, \frac{x}{3^2}, \cdots, \frac{x}{3^{n-1}}$,并乘以相应系数,得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
g(x) - \frac{1}{3} g\left(\frac{x}{3}\right) &= x, \\
|
|
|
|
|
|
|
|
\frac{1}{3} g\left(\frac{x}{3}\right) - \frac{1}{3^2} g\left(\frac{x}{3^2}\right) &= \frac{1}{3^2} x, \\
|
|
|
|
|
|
|
|
\frac{1}{3^2} g\left(\frac{x}{3^2}\right) - \frac{1}{3^3} g\left(\frac{x}{3^3}\right) &= \frac{1}{3^4} x, \\
|
|
|
|
|
|
|
|
&\vdots \\
|
|
|
|
|
|
|
|
\frac{1}{3^{n-1}} g\left(\frac{x}{3^{n-1}}\right) - \frac{1}{3^n} g\left(\frac{x}{3^n}\right) &= \frac{1}{3^{2(n-1)}} x.
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
以上各式相加,得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
g(x) - \frac{1}{3^n} g\left(\frac{x}{3^n}\right) = x \left(1 + \frac{1}{9} + \frac{1}{9^2} + \cdots + \frac{1}{9^{n-1}}\right).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
因为 $|g(x)| \leq 1$,所以 $\lim\limits_{n \to \infty} \frac{1}{3^n} g\left(\frac{x}{3^n}\right) = 0$。
|
|
|
|
|
|
|
|
而 $\lim\limits_{n \to \infty} \left(1 + \frac{1}{9} + \frac{1}{9^2} + \cdots + \frac{1}{9^{n-1}}\right) = \frac{1}{1 - \frac{1}{9}} = \frac{9}{8}$,
|
|
|
|
|
|
|
|
因此 由函数的连续性,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
g(x) = \frac{9}{8} x.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
于是 $\sin f(x) = \frac{9}{8} x$,解得
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f(x) = 2k\pi + \arcsin \frac{9}{8} x \quad \text{或} \quad f(x) = (2k-1)\pi - \arcsin \frac{9}{8} x \quad (k \in \mathbb{Z}).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8.已知当$x \to 0$时,函数$f(x) = a + bx^2 - \cos x$与$x^2$是等价无穷小。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1) 求参数$a, b$的值;(5分)
|
|
|
|
|
|
|
|
(2) 计算极限$$\lim_{x \to 0} \frac{f(x) - x^2}{x^4}$$的值。(5分)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)
|
|
|
|
|
|
|
|
由于
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} f(x) = \lim_{x \to 0} \left( a + bx^2 - \cos x \right) = a - 1 = 0,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
故$a = 1$。
|
|
|
|
|
|
|
|
又因为$f(x)$与$x^2$等价无穷小,所以
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{1 + bx^2 - \cos x}{x^2} = b + \lim_{x \to 0} \frac{1 - \cos x}{x^2} = b + \frac{1}{2} = 1,
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
因此$b = \frac{1}{2}$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2)
|
|
|
|
|
|
|
|
由$\cos x$的麦克劳林展开:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
代入$f(x)$:
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f(x) = 1 + \frac{1}{2}x^2 - \left( 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4) \right) = x^2 - \frac{1}{24}x^4 + o(x^4).
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\lim_{x \to 0} \frac{f(x) - x^2}{x^4} = \lim_{x \to 0} \frac{-\frac{1}{24}x^4 + o(x^4)}{x^4} = -\frac{1}{24}.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9.设$f(x)$在$[0,1]$上连续,在$(0,1)$上可导,且 $f(0)=0, f(1)=1$。试证:
|
|
|
|
|
|
|
|
(1)在$(0,1)$内存在不同的$\xi, \eta$使$f'(\xi)f'(\eta)=1$;
|
|
|
|
|
|
|
|
(2)对任意给定的正数$a, b$,在$(0,1)$内存在不同的$\xi, \eta$使$\frac{a}{f'(\xi)}+\frac{b}{f'(\eta)}=a+b$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**分析**
|
|
|
|
|
|
|
|
(1)只需将$[0,1]$分成两个区间,使$f(x)$在两个区间各用一次微分中值定理。设分点为$x_0 \in (0,1)$,由
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f(x_0)-f(0)=f'(\xi)(x_0-0),\quad f(1)-f(x_0)=f'(\eta)(1-x_0) \quad (0<\xi<x_0<\eta<1),
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
得$f'(\xi)=\frac{f(x_0)}{x_0}$,$f'(\eta)=\frac{1-f(x_0)}{1-x_0}$,则
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
f'(\xi)f'(\eta)=1 \Leftrightarrow \frac{f(x_0)}{x_0} \cdot \frac{1-f(x_0)}{1-x_0} = 1.
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
等价于$x_0$是方程$f(x)[1-f(x)] = x(1-x)$的根。取$x_0$满足$f(x_0)=1-x_0$即可。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**证明**:
|
|
|
|
|
|
|
|
(1)令$F(x)=f(x)-1+x$,则$F(x)$在$[0,1]$上连续,且$F(0)=-1<0$,$F(1)=1>0$。由介值定理知,存在$x_0 \in (0,1)$使$F(x_0)=0$,即$f(x_0)=1-x_0$。
|
|
|
|
|
|
|
|
在$[0,x_0]$和$[x_0,1]$上分别应用拉格朗日中值定理,存在$\xi \in (0,x_0)$,$\eta \in (x_0,1)$,使得
|
|
|
|
|
|
|
|
$$f'(\xi)=\frac{f(x_0)-f(0)}{x_0-0},\quad f'(\eta)=\frac{f(1)-f(x_0)}{1-x_0}.$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$f'(\xi)f'(\eta)=\frac{f(x_0)}{x_0} \cdot \frac{1-f(x_0)}{1-x_0} = \frac{1-x_0}{x_0} \cdot \frac{x_0}{1-x_0} = 1.$$ (2)
|
|
|
|
|
|
|
|
给定正数$a, b$,令$c = \frac{a}{a+b}$,则$0<c<1$。由于$f(x)$在$[0,1]$上连续,且$f(0)=0$, $f(1)=1$,由介值定理,存在$x_1 \in (0,1)$使得$f(x_1) = c = \frac{a}{a+b}$。
|
|
|
|
|
|
|
|
在区间$[0, x_1]$和$[x_1, 1]$上分别应用拉格朗日中值定理,存在$\xi \in (0, x_1)$, $\eta \in (x_1, 1)$,使得
|
|
|
|
|
|
|
|
$$f'(\xi) = \frac{f(x_1) - f(0)}{x_1 - 0} = \frac{f(x_1)}{x_1}, \quad
|
|
|
|
|
|
|
|
f'(\eta) = \frac{f(1) - f(x_1)}{1 - x_1} = \frac{1 - f(x_1)}{1 - x_1}.$$
|
|
|
|
|
|
|
|
于是
|
|
|
|
|
|
|
|
$$\frac{a}{f'(\xi)} + \frac{b}{f'(\eta)} = a \cdot \frac{x_1}{f(x_1)} + b \cdot \frac{1 - x_1}{1 - f(x_1)}.$$
|
|
|
|
|
|
|
|
代入$f(x_1) = \frac{a}{a+b}$, $1 - f(x_1) = \frac{b}{a+b}$,得
|
|
|
|
|
|
|
|
$$\frac{a}{f'(\xi)} + \frac{b}{f'(\eta)} = a \cdot \frac{x_1}{a/(a+b)} + b \cdot \frac{1 - x_1}{b/(a+b)} = (a+b)x_1 + (a+b)(1 - x_1) = a+b.$$
|
|
|
|
|
|
|
|
故命题得证。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10.讨论级数 $$\sum_{n=2}^{\infty} \frac{(-1)^n}{[n+(-1)^n]^p}$$ ( $p>0$ )的敛散性。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**补充整理:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. 若两级数均收敛,则其和也收敛;若两个都绝对收敛,则和也绝对收敛;若一个绝对收敛一个条件收敛,则和条件收敛。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. 若两级数仅一个收敛,则其和是发散的。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**级数添加与去掉括号的敛散性有以下结论:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1. 收敛级数任意添加括号也收敛。
|
|
|
|
|
|
|
|
2. 若收敛级数去掉括号后的通项仍以0为极限,则去掉括号后的级数也收敛,且和不变。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**去括号情况的证明**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
设 $(a_1 + \cdots + a_{n_1}) + (a_{n_1+1} + \cdots + a_{n_2}) + \cdots + (a_{n_{k-1}+1} + \cdots + a_{n_k}) + \cdots$ 收敛于 $S$,且 $\lim\limits_{n \to \infty} a_n = 0$。记该级数的部分和为 $T_k$,$\sum_{n=1}^{\infty} a_n$ 的部分和为 $S_n$,则 $T_k = S_{n_k}$,$\lim\limits_{k \to \infty} S_{n_k} = \lim\limits_{k \to \infty} T_k = S$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
由于 $\lim\limits_{n \to \infty} a_n = 0$,对 $\forall i \in \{1, 2, \cdots, n_{k+1} - n_k - 1\}$,有
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$\lim\limits_{k \to \infty} S_{n_k+i} = \lim\limits_{k \to \infty} ( T_k + a_{n_k+1} + \cdots + a_{n_k+i} ) = S$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
所以 $\lim\limits_{n \to \infty} S_n = S$,即 $\sum\limits_{n=1}^{\infty} a_n$ 也收敛于 $S$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**分析** 这是交错级数,且通项趋于0,但通项不单调,不适用莱布尼茨准则。可考虑用添加括号的方式来证明。也可采用交换相邻两项顺序的方式使通项满足单调性。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**解**:
|
|
|
|
|
|
|
|
$$|a_n| = \left| \frac{(-1)^n}{[n+(-1)^n]^p} \right| = \frac{1}{n^p} \cdot \frac{1}{\left[ 1 + \frac{(-1)^n}{n} \right]^p} \sim \frac{1}{n^p}$$ ($n \to \infty$)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
当 $p>1$ 时,级数绝对收敛;当 $0<p<1$ 时,级数不绝对收敛。
|
|
|
|
|
|
|
|
下面讨论 $0<p\leq 1$ 时,级数的收敛性。
|
|
|
|
|
|
|
|
首先,级数的通项 $a_n \to 0$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法1** 将原级数按如下方式添加括号
|
|
|
|
|
|
|
|
$$\left( \frac{1}{3^p} - \frac{1}{2^p} \right) + \left( \frac{1}{5^p} - \frac{1}{4^p} \right) + \cdots + \left( \frac{1}{(2n+1)^p} - \frac{1}{(2n)^p} \right) + \cdots$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
记 $b_n = \frac{1}{(2n+1)^p} - \frac{1}{(2n)^p}$,则 $b_n < 0$,$\sum_{n=2}^{\infty} (-b_n)$是正项级数。由于
|
|
|
|
|
|
|
|
$$-b_n = \frac{1}{(2n)^p} - \frac{1}{(2n+1)^p} = \frac{1}{(2n+1)^p} \left[ \left( 1 + \frac{1}{2n} \right)^p - 1 \right] \sim \frac{1}{(2n+1)^p} \cdot \frac{p}{2n} \sim \frac{p}{(2n)^{p+1}}$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
而 $p+1>1$,所以 $\sum_{n=2}^{\infty} (-b_n)$ 收敛,由上面补充中去括号的讨论知,原级数收敛。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法2** 同样考虑方法1中的级数 $\sum\limits_{n=2}^{\infty} (-b_n)$,其部分和为
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
|
|
|
S_n &= \left( \frac{1}{2^p} - \frac{1}{3^p} \right) + \left( \frac{1}{4^p} - \frac{1}{5^p} \right) + \cdots + \left( \frac{1}{(2n)^p} - \frac{1}{(2n+1)^p} \right) \\
|
|
|
|
|
|
|
|
&= \frac{1}{2^p} \left( \frac{1}{3^p} - \frac{1}{4^p} \right) - \left( \frac{1}{5^p} - \frac{1}{6^p} \right) - \cdots - \left( \frac{1}{(2n-1)^p} - \frac{1}{(2n)^p} \right) - \frac{1}{(2n+1)^p} < \frac{1}{2^p}
|
|
|
|
|
|
|
|
\end{aligned}
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
正项级数部分和数列有界,级数收敛,从而原级数收敛。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**方法3** 原级数是
|
|
|
|
|
|
|
|
$$\frac{1}{3^p} - \frac{1}{2^p} + \frac{1}{5^p} - \frac{1}{4^p} + \cdots + \frac{1}{(2n+1)^p} - \frac{1}{(2n)^p} + \cdots$$
|
|
|
|
|
|
|
|
奇偶项互换后的新级数为
|
|
|
|
|
|
|
|
$$\frac{1}{2^p} - \frac{1}{3^p} + \frac{1}{4^p} - \frac{1}{5^p} + \cdots + \frac{1}{(2n)^p} - \frac{1}{(2n+1)^p} + \cdots$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
记 $c_n = \frac{1}{n^p}$,该级数为 $\sum\limits_{n=2}^{\infty}(-1)^{n-1}c_n$,由于 $c_n$ 单减趋于0,由莱布尼茨判别法知,该交错级数收敛,从而原级数收敛。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**评注** “方法3” 用到了收敛级数的性质:收敛级数交换相邻两项的位置后的级数仍收敛,且和不变。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
证明如下:
|
|
|
|
|
|
|
|
设 $a_1 + a_2 + a_3 + a_4 + \cdots + a_{2n-1} + a_{2n} + \cdots$ 收敛于 $S$,其部分和为 $S_n$。交换相邻两项的位置后的级数为 $a_2 + a_1 + a_4 + a_3 + \cdots + a_{2n} + a_{2n-1} + \cdots$,其部分和为 $T_n$,则
|
|
|
|
|
|
|
|
$$T_{2n} = S_{2n} \Rightarrow \lim_{n \to \infty} T_{2n} = \lim_{n \to \infty} S_{2n} = S, \quad \lim_{n \to \infty} T_{2n+1} = \lim_{n \to \infty} T_{2n} + \lim_{n \to \infty} a_{2n+2} = S,$$
|
|
|
|
|
|
|
|
所以 $\lim\limits_{n \to \infty} T_n = S$。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11.(10分)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)证明: 对任意的正整数 $n$,方程
|
|
|
|
|
|
|
|
$$ x^n + n^2 x - 1 = 0 $$
|
|
|
|
|
|
|
|
有唯一正实根(记为 $x_n$)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**证明:**
|
|
|
|
|
|
|
|
令 $f_n(x) = x^n + n^2x - 1$ 。显然 $f_n(x)$ 在 $[0,1]$ 上连续,且
|
|
|
|
|
|
|
|
$$ f_n(0) = -1 < 0, \quad f_n(1) = n^2 > 0, $$
|
|
|
|
|
|
|
|
由闭区间上连续函数的零值定理可知,至少存在一点 $\xi \in (0,1)$,使得 $f_n(\xi) = 0$,即
|
|
|
|
|
|
|
|
$$ x^n + n^2x - 1 = 0 $$
|
|
|
|
|
|
|
|
至少有一个正实根。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
又
|
|
|
|
|
|
|
|
$$ f'_n(x) = nx^{n-1} + n^2, $$
|
|
|
|
|
|
|
|
易知当 $x > 0$ 时,$f'_n(x) > 0$,故函数 $f_n(x)$ 在 $(0,+\infty)$ 内严格单调增加,因此 $f_n(x)$ 在 $(0,+\infty)$ 内至多只有一个零点。综上,函数 $f_n(x)$ 在$(0,+\infty)$ 内有唯一零点,即方程 $x^n + n^2x - 1 = 0$ 有唯一正实根。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2) 证明: 级数
|
|
|
|
|
|
|
|
$$ \sum_{n=1}^\infty x_n $$
|
|
|
|
|
|
|
|
收敛,且其和不超过 2。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**证明:**
|
|
|
|
|
|
|
|
记方程$x^n + n^2 x - 1 = 0$ 的唯一正实根为 $x_n$,则 $x_n^n + n^2 x_n - 1 = 0$,故
|
|
|
|
|
|
|
|
$$ 0 < x_n = \frac{1}{n^2} - \frac{x_n^n}{n^2} < \frac{1}{n^2}. $$
|
|
|
|
|
|
|
|
根据比较判别法,由于级数 $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,故级数$\sum\limits_{n=1}^{\infty} x_n$收敛。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
记$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$的前$n$ 项部分和为 $S_n$,$\sum\limits_{n=1}^{\infty} x_n$的前$n$ 项部分和为$T_n$,显然$T_n < S_n$,且
|
|
|
|
|
|
|
|
$$\begin{aligned}
|
|
|
|
|
|
|
|
S_n &= \frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{n^2} < \frac{1}{1} + \frac{1}{1 \cdot 2} + \cdots + \frac{1}{(n-1)n}
|
|
|
|
|
|
|
|
\\&= 1 + 1 - \frac{1}{2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n-1} - \frac{1}{n}
|
|
|
|
|
|
|
|
\\&= 2 - \frac{1}{n}<2,
|
|
|
|
|
|
|
|
\end{aligned}$$
|
|
|
|
|
|
|
|
根据数列极限的保号性(更准确地说是保序性),
|
|
|
|
|
|
|
|
$$ \sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} T_n \leq \lim_{n \to \infty} S_n \leq 2. $$
|
|
|
|
|