parent
bff03bf192
commit
265da95108
@ -0,0 +1,42 @@
|
||||
# coding: utf-8
|
||||
import sys, os
|
||||
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from dataset.mnist import load_mnist
|
||||
from simple_convnet import SimpleConvNet
|
||||
from common.trainer import Trainer
|
||||
|
||||
# 读入数据
|
||||
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)
|
||||
|
||||
# 处理花费时间较长的情况下减少数据
|
||||
#x_train, t_train = x_train[:5000], t_train[:5000]
|
||||
#x_test, t_test = x_test[:1000], t_test[:1000]
|
||||
|
||||
max_epochs = 20
|
||||
|
||||
network = SimpleConvNet(input_dim=(1,28,28),
|
||||
conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
|
||||
hidden_size=100, output_size=10, weight_init_std=0.01)
|
||||
|
||||
trainer = Trainer(network, x_train, t_train, x_test, t_test,
|
||||
epochs=max_epochs, mini_batch_size=100,
|
||||
optimizer='Adam', optimizer_param={'lr': 0.001},
|
||||
evaluate_sample_num_per_epoch=1000)
|
||||
trainer.train()
|
||||
|
||||
# 保存参数
|
||||
network.save_params("params.pkl")
|
||||
print("Saved Network Parameters!")
|
||||
|
||||
# 绘制图形
|
||||
markers = {'train': 'o', 'test': 's'}
|
||||
x = np.arange(max_epochs)
|
||||
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
|
||||
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
|
||||
plt.xlabel("epochs")
|
||||
plt.ylabel("accuracy")
|
||||
plt.ylim(0, 1.0)
|
||||
plt.legend(loc='lower right')
|
||||
plt.show()
|
Loading…
Reference in new issue