You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

46 lines
1.4 KiB

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchlibrosa.augmentation import SpecAugmentation
# 加载音频文件
file_path = 'test.wav'
y, sr = librosa.load(file_path, sr=None)
# 计算音频信号的 Short-Time Fourier Transform (STFT)
D = librosa.stft(y)
# 计算 spectrogram
spectrogram = librosa.amplitude_to_db(abs(D), ref=np.max)
# 绘制原始音频信号的频谱图
plt.figure(figsize=(10, 6))
librosa.display.specshow(spectrogram, sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title('origin spectrogram')
plt.savefig('origin_spectrogram.png')
# 转换为 PyTorch 张量
spectrogram_tensor = torch.from_numpy(spectrogram).unsqueeze(0).unsqueeze(0)
# 应用 SpecAugmentation
spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2, freq_drop_width=8, freq_stripes_num=2)
augmented_spectrogram_tensor = spec_augmenter(spectrogram_tensor)
# 将增强的频谱图转换回 numpy 数组
augmented_spectrogram = augmented_spectrogram_tensor.squeeze(0).squeeze(0).numpy()
# 绘制使用 SpecAugmentation 的频谱图
plt.figure(figsize=(10, 6))
librosa.display.specshow(augmented_spectrogram, sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title('after spec augment spectrogram')
plt.savefig('spec_augment.png')