You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
3 years ago | |
|---|---|---|
| 2 | 3 years ago | |
| 3 | 3 years ago | |
| README.md | 3 years ago | |
README.md
众数
#include <stdio.h>
int num; //全局变量,存放众数
int maxcnt = 0; //全局变量,存放重数
void split(int a[], int low, int high, int& mid, int& left, int& right)
//以a[low..high]中间的元素为界限,确定为等于a[mid]元素的左、右位置left和right
{
mid = (low + high) / 2;
for (left = low; left <= high; left++)
if (a[left] == a[mid])
break;
for (right = left + 1; right <= high; right++)
if (a[right] != a[mid])
break;
right--;
}
void Getmaxcnt(int a[], int low, int high)
{
if (low <= high) //a[low..high]序列至少有1个元素
{
int mid, left, right;
split(a, low, high, mid, left, right);
int cnt = right - left + 1; //求出a[mid]元素的重数
if (cnt > maxcnt) //找到更大的重数
{
num = a[mid];
maxcnt = cnt;
}
Getmaxcnt(a, low, left - 1); //左序列递归处理
Getmaxcnt(a, right + 1, high); //右序列递归处理
}
}
int main()
{
int a[] = { 1,2,2,2,3,3,5,6,6,6,6 };
int n = sizeof(a) / sizeof(a[0]);
printf("求解结果\n");
printf(" 递增序列: ");
for (int i = 0; i < n; i++)
printf("%d ", a[i]);
printf("\n");
Getmaxcnt(a, 0, n - 1);
printf(" 众数: %d, 重数: %d\n", num, maxcnt);
}
钓鱼
#include<stdio.h>
#define MAX 30
int n = 2; //湖的个数
int h = 1; //可用时间
int fi[MAX] = { 0,10,1 }; //最初钓鱼量,数组下标0不用
int di[MAX] = { 0,2,5 }; //单位时间鱼的减少量,数组下标0不用
int ti[MAX] = { 0,2 }; //ti[i]为湖i到湖i+1的时间,数组下标0不用
int cfi[MAX]; //保存fi
//求解结果表示
struct NodeType
{
int num[MAX]; //各个湖的钓鱼时间
int max; //最多的钓鱼量
} Lake[MAX]; //Lake[i]表示经过最后一个湖i的结果
int maxlast; //最多钓鱼量时最后经过湖的编号
int GetMax(int p[], int i, int j) //求p[i..j]中最大元素的下标
{
int maxi = i; //最大元素下标初始化
for (int k = i + 1; k <= j; k++)
if (p[maxi] < p[k]) //比较
maxi = k;
return maxi;
}
void solve() //求解钓鱼问题
{
int i, j, t, restT;
int T = 60 * h; //可用时间总时间
for (i = 1; i <= n; i++) //枚举每一个可能的结束湖位置
{
restT = T; //剩下的时间
for (j = 1; j <= i; j++) //所有走过的湖是1,2,…,i
{
cfi[j] = fi[j]; //初始化cfi
if (j < i)
restT -= 5 * ti[j]; //减去到达湖i路上走路的时间
}
t = 0;
while (t < restT) //考虑所有的钓鱼时间
{
int k = GetMax(cfi, 1, i); //找到钓鱼量最多的湖k
Lake[i].max += cfi[k]; //在湖k中钓一个单位时间的鱼
Lake[i].num[k] += 5; //湖i的钓鱼时间增加一个单位时间
if (cfi[k] >= di[k]) //修改湖k下一个单位时间的钓鱼量
cfi[k] -= di[k];
else
cfi[k] = 0;
t += 5; //增加一个单位时间5
}
}
}
int main()
{
int i, j;
for (i = 1; i <= n; i++) //Lake数组初始化
{
Lake[i].max = 0;
for (j = 0; j <= n; j++)
Lake[i].num[j] = 0;
}
solve();
printf("求解结果\n");
maxlast = 1;
for (i = 2; i <= n; i++)
if (Lake[i].max > Lake[maxlast].max)
maxlast = i;
for (i = 1; i <= n; i++)
printf(" 在湖%d钓鱼时间为%d分钟\n", i, Lake[maxlast].num[i]);
printf(" 总的钓鱼量: %d\n", Lake[maxlast].max);
return 0;
}
填数
#include<iostream>
#include<cmath>
using namespace std;
int a[11] = { 0,1,2,3,4,5,6,7,8,9,10 };
int x[11];
int sum = 0;
bool unprime(int a, int b)
{
int c = a + b, counter = 0;
for (int i = 2; i <= sqrt(c); i++)
{
if (c % i == 0)counter++;
}
if (counter != 0)return true;
else return false;
}
void func(int i)
{
if (i == 11)
{
for (int i = 1; i < 9; i++)
{
if (unprime(x[i], x[i + 1]))return;
}
if (unprime(x[8], x[1]) || unprime(x[9], x[2]) || unprime(x[9], x[4]) || unprime(x[9], x[6]))return;
sum++;
for (int i = 1; i <= 3; i++)cout << x[i] << ' ';
cout << endl;
cout << x[8] << ' ' << x[9] << ' ' << x[4] << endl;
cout << x[7] << ' ' << x[6] << ' ' << x[5] << endl << endl << endl;
}
else
{
for (int j = i; j <= 10; j++)
{
swap(a[i], a[j]);
x[i] = a[i];
func(i + 1);
swap(a[i], a[j]);
}
}
}
int main()
{
func(1);
cout << "总数:" << sum;
return 0;
}
求解解救amaze问题
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
using namespace std;
#define MAX 31
//问题表示
int n;
char b[MAX][MAX];
//求解结果表示
int bite; //被野狗咬的次数
int visited[MAX][MAX];
int px, py, ax, ay; //Magicpig和Amaze的位置
int H[4] = { 0, 1, 0, -1 }; //水平偏移量,下标对应方位号0~3
int V[4] = { -1, 0, 1, 0 }; //垂直偏移量
struct NodeType //队列结点类型
{
int x, y; //当前位置
int length; //走过的路径长度
double lb;
bool operator<(const NodeType& s) const //重载<关系函数
{
return lb > s.lb; //按lb越小越优先出队
}
};
void bound(NodeType& e) //计算分枝结点e的下界
{
double d = sqrt((e.x - ax) * (e.x - ax) + (e.y - ay) * (e.y - ay));
e.lb = e.length + d;
}
bool bfs() //求解解救Amaze问题
{
priority_queue<NodeType> qu;
NodeType e, e1;
e.x = px; e.y = py;
e.length = 0;
bound(e);
visited[px][py] = 1;
qu.push(e);
while (!qu.empty()) //队列不空循环
{
e = qu.top(); qu.pop();
if (e.x == ax && e.y == ay) //找到Amaze
return true;
for (int i = 0; i < 4; i++)
{
e1.x = e.x + H[i];
e1.y = e.y + V[i];
if (e1.x < 0 || e1.x >= n || e1.y < 0 || e1.y >= n)
continue;
if (visited[e1.x][e1.y] == 1) //已经走过,跳出
continue;
if (b[e1.x][e1.y] == 'k') //为金刚,跳出
continue;
if (b[e1.x][e1.y] == 'r' || b[e1.x][e1.y] == 'a')//遇到道路或者Amaze
{
e1.length = e.length + 1; //路径长度增加1
bound(e1);
visited[e1.x][e1.y] = 1;
qu.push(e1);
}
else if (b[e1.x][e1.y] == 'd') //遇到野狗
{
if (bite == 0) //被野狗咬1次的情况
{
e1.length = e.length + 1; //路径长度增加1
bound(e1);
visited[e1.x][e1.y] = 1;
qu.push(e1);
bite++; //被野狗咬次数增加1
}
}
}
}
return false;
}
int main()
{
int t, i, j, x, y;
scanf("%d", &t); //输入t
while (t--)
{
bite = 0;
memset(visited, 0, sizeof(visited));
scanf("%d", &n); //输入n
for (i = 0; i < n; i++) //输入一个测试用例
scanf("%s", b[i]);
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
if (b[i][j] == 'p') //Magicpig的位置(px,py)
{
px = i;
py = j;
}
if (b[i][j] == 'a') //Amaze的位置(ax,ay)
{
ax = i;
ay = j;
}
}
if (bfs())
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
仓库设计问题
#include <iostream>
#include <cmath>
using namespace std;//24//53//66
int judge(int x1, int y1, int x2, int y2, int x3, int y3)
{
int minpath;
minpath = x1 + y1 + x2 + y2 + x3 + y3;
for (int i = min(min(x1, x2), x3); i <= max(max(x1, x2), x3); i++)
{
for (int j = min(min(x1, x2), x3); j <= max(max(x1, x2), x3); j++)
{
if (minpath > abs(x1 - i) + abs(y1 - j) + abs(x2 - i) + abs(y2 - j) + abs(x3 - i) + abs(y3 - j))
{
minpath = abs(x1 - i) + abs(y1 - j) + abs(x2 - i) + abs(y2 - j) + abs(x3 - i) + abs(y3 - j);
}
}
}
return minpath;
}
int main()
{
cout << judge(2, 4, 5, 3, 6, 6) << endl;
return 0;
}
买股票
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 5050;
int n;
int a[maxn];
int dp[maxn];//dp[i]表示以a[i]结尾的最长下降序列的长度
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
dp[i] = 1;
}
//状态转移方程
int res = 0;
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (a[i] < a[j]) {
dp[i] = max(dp[j] + 1, dp[i]);
}
}
res = max(res, dp[i]);
}
//输出
cout << res;
}
自行车
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#define INF 0x3f3f3f3f //定义∞
#define MAXV 101
int A[MAXV][MAXV]; //邻接矩阵
int n, m;
int s, t;
int dist[MAXV];
void BellmanFord(int v) //贝尔曼-福特算法
{
int i, k, u;
for (i = 0; i < n; i++)
dist[i] = A[v][i]; //对dist0[i]初始化
for (k = 1; k < n; k++) //从dist0[u]递推出dist2[u], …,distn-1[u]循环n-2次
{
for (u = 0; u < n; u++) //修改所有非顶点v的dist[]值
{
if (u != v)
{
for (i = 0; i < n; i++)
{
if (A[i][u]<INF && dist[u]>dist[i] + A[i][u])
dist[u] = dist[i] + A[i][u];
}
}
}
}
}
int main()
{
int i, j;
int a, b, l;
scanf("%d%d", &n, &m); //输入n、m
for (i = 0; i < n; i++) //初始化邻接矩阵
for (j = 0; j < n; j++)
if (i == j)
A[i][j] = 0;
else
A[i][j] = INF;
for (i = 0; i < m; i++) //输入边
{
scanf("%d%d%d", &a, &b, &l);
A[a][b] = -l;
}
scanf("%d%d", &s, &t); //输入s和t
BellmanFord(s); //采用BellmanFord算法求s出发的最短路径
printf("%d\n", -dist[t]); //输出结果
return 1;
}
二叉树
#include <vector>
#include <string>
#include<stdlib.h>
using namespace std;
typedef int ElemType;
typedef struct node
{
ElemType data; //数据元素
struct node* lchild; //指向左孩子结点
struct node* rchild; //指向右孩子结点
} BTNode; //二叉链结点类型
BTNode* CreateBTree(ElemType a[], ElemType b[], int n)
//对应例2.8的算法由先序序列a[0..n-1]和中序序列b[0..n-1]建立二叉链
{
int k;
if (n <= 0) return NULL;
ElemType root = a[0]; //根结点值
BTNode* bt = (BTNode*)malloc(sizeof(BTNode));
bt->data = root;
for (k = 0; k < n; k++) //在b中查找b[k]=root的根结点
if (b[k] == root)
break;
bt->lchild = CreateBTree(a + 1, b, k); //递归创建左子树
bt->rchild = CreateBTree(a + k + 1, b + k + 1, n - k - 1); //递归创建右子树
return bt;
}
void DispBTree(BTNode* bt)
//采用括号表示输出二叉链bt
{
if (bt != NULL)
{
printf("%d", bt->data);
if (bt->lchild != NULL || bt->rchild != NULL)
{
printf("("); //有孩子结点时才输出(
DispBTree(bt->lchild); //递归处理左子树
if (bt->rchild != NULL) printf(","); //有右孩子结点时才输出,
DispBTree(bt->rchild); //递归处理右子树
printf(")"); //有孩子结点时才输出)
}
}
}
void DestroyBTree(BTNode*& bt)
//释放以bt为根结点的二叉树
{
if (bt != NULL)
{
DestroyBTree(bt->lchild);
DestroyBTree(bt->rchild);
free(bt);
}
}
int maxsum = 0; //全局变量:存放最大路径和。
vector<int> maxpath; //全局变量:存放最大路径
void Findmaxpath(BTNode* bt, vector <int > apath, int asum)
//求根结点到叶结点的路径和最大的路径
{
if (bt == NULL) //空树直接返回
return;
apath.push_back(bt->data); asum += bt->data; //bt结点加入apath
asum += bt->data; //累计a路径和。
if (bt->lchild == NULL && bt->rchild == NULL) //bt结点为叶结点
{
if (asum - maxsum)
{
maxsum = asum;
maxpath.clear();
maxpath = apath;
}
}
Findmaxpath(bt->lchild, apath, asum); //在左子树中查找
Findmaxpath(bt->rchild, apath, asum); //在右子树中查找
}
int main()
{
BTNode* bt;
ElemType a[] = { 5,2,3,4,1,6 };
ElemType b[] = { 2,3,5,1,4,6 };
int n = sizeof(a)/sizeof(a[0]);
bt = CreateBTree(a,b,n);
printf("实验结果:\n");
printf("二叉树bt:");
DispBTree(bt);
printf("'in");
printf("最大路径");
vector<int> apath;
int asum = 0;
Findmaxpath(bt,apath,asum);
printf("路径和: % d,路径 : ",maxsum);
for (int i=0;i < maxpath.size();i++)
printf("%d ",maxpath[i]);
printf("\n");
printf("销毁树bt\n");
DestroyBTree(bt);
}