|
|
|
@ -0,0 +1,84 @@
|
|
|
|
|
# 导入文件
|
|
|
|
|
import os
|
|
|
|
|
import numpy as np
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
import batchdealing
|
|
|
|
|
import forward
|
|
|
|
|
|
|
|
|
|
# 变量声明
|
|
|
|
|
N_CLASSES = 9 # 9类 分别是:'one','two','three','four','five','six','seven','eight','nine'
|
|
|
|
|
IMG_W = 64 # resize图像,太大的话训练时间久
|
|
|
|
|
IMG_H = 64
|
|
|
|
|
BATCH_SIZE = 20 # 一次喂入多少
|
|
|
|
|
CAPACITY = 200 # 容量
|
|
|
|
|
MAX_STEP = 200 # 一般大于10K
|
|
|
|
|
learning_rate = 0.0001 # 一般小于0.0001
|
|
|
|
|
|
|
|
|
|
# 获取批次batch /Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/
|
|
|
|
|
train_dir = '/Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/' # 训练样本的读入路径
|
|
|
|
|
# logs_train_dir = '/Users/leixinhong/PycharmProjects/classification/teethimg/Re_train/' # logs存储路径
|
|
|
|
|
logs_test_dir = '/Users/leixinhong/PycharmProjects/classification/teethimg/test' # logs存储路径
|
|
|
|
|
|
|
|
|
|
# train, train_label = batchdealing.get_files(train_dir)
|
|
|
|
|
train, train_label, val, val_label = batchdealing.get_files(train_dir, 0.3)
|
|
|
|
|
# 训练数据及标签
|
|
|
|
|
train_batch, train_label_batch = batchdealing.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
|
|
|
|
|
# 测试数据及标签
|
|
|
|
|
val_batch, val_label_batch = batchdealing.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
|
|
|
|
|
|
|
|
|
|
# 训练操作定义
|
|
|
|
|
train_logits = forward.inference(train_batch, BATCH_SIZE, N_CLASSES)
|
|
|
|
|
train_loss = forward.losses(train_logits, train_label_batch)
|
|
|
|
|
train_op = forward.trainning(train_loss, learning_rate)
|
|
|
|
|
train_acc = forward.evaluation(train_logits, train_label_batch)
|
|
|
|
|
|
|
|
|
|
# 测试操作定义
|
|
|
|
|
test_logits = forward.inference(val_batch, BATCH_SIZE, N_CLASSES)
|
|
|
|
|
test_loss = forward.losses(test_logits, val_label_batch)
|
|
|
|
|
test_acc = forward.evaluation(test_logits, val_label_batch)
|
|
|
|
|
|
|
|
|
|
# 这个是log汇总记录
|
|
|
|
|
summary_op = tf.compat.v1.summary.merge_all()
|
|
|
|
|
|
|
|
|
|
# 产生一个会话
|
|
|
|
|
sess = tf.compat.v1.Session()
|
|
|
|
|
|
|
|
|
|
# 产生一个writer来写log文件
|
|
|
|
|
train_writer = tf.compat.v1.summary.FileWriter(logs_test_dir, sess.graph)
|
|
|
|
|
|
|
|
|
|
# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
|
|
|
|
|
# 产生一个saver来存储训练好的模型
|
|
|
|
|
saver = tf.compat.v1.train.Saver()
|
|
|
|
|
|
|
|
|
|
# 所有节点初始化
|
|
|
|
|
sess.run(tf.compat.v1.global_variables_initializer())
|
|
|
|
|
|
|
|
|
|
# 队列监控
|
|
|
|
|
coord = tf.train.Coordinator()
|
|
|
|
|
threads = tf.compat.v1.train.start_queue_runners(sess=sess, coord=coord)
|
|
|
|
|
|
|
|
|
|
# 进行batch的训练
|
|
|
|
|
try:
|
|
|
|
|
# 执行MAX_STEP步的训练,一步一个batch
|
|
|
|
|
for step in np.arange(MAX_STEP):
|
|
|
|
|
if coord.should_stop():
|
|
|
|
|
break
|
|
|
|
|
# 启动以下操作节点
|
|
|
|
|
_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
|
|
|
|
|
|
|
|
|
|
# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer
|
|
|
|
|
if step % 10 == 0:
|
|
|
|
|
print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
|
|
|
|
|
summary_str = sess.run(summary_op)
|
|
|
|
|
train_writer.add_summary(summary_str, step)
|
|
|
|
|
# 每隔100步,保存一次训练好的模型
|
|
|
|
|
if (step + 1) == MAX_STEP:
|
|
|
|
|
checkpoint_path = os.path.join(logs_test_dir, 'model.ckpt')
|
|
|
|
|
saver.save(sess, checkpoint_path, global_step=step)
|
|
|
|
|
|
|
|
|
|
except tf.errors.OutOfRangeError:
|
|
|
|
|
print('Done training -- epoch limit reached')
|
|
|
|
|
|
|
|
|
|
finally:
|
|
|
|
|
coord.request_stop()
|
|
|
|
|
|