You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

155 lines
5.1 KiB

7 months ago
"""
Tests shared by MaskedArray subclasses.
"""
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension.base import BaseOpsUtil
class ComparisonOps(BaseOpsUtil):
def _compare_other(self, data, op, other):
# array
result = pd.Series(op(data, other))
expected = pd.Series(op(data._data, other), dtype="boolean")
# fill the nan locations
expected[data._mask] = pd.NA
tm.assert_series_equal(result, expected)
# series
ser = pd.Series(data)
result = op(ser, other)
# Set nullable dtype here to avoid upcasting when setting to pd.NA below
expected = op(pd.Series(data._data), other).astype("boolean")
# fill the nan locations
expected[data._mask] = pd.NA
tm.assert_series_equal(result, expected)
# subclass will override to parametrize 'other'
def test_scalar(self, other, comparison_op, dtype):
op = comparison_op
left = pd.array([1, 0, None], dtype=dtype)
result = op(left, other)
if other is pd.NA:
expected = pd.array([None, None, None], dtype="boolean")
else:
values = op(left._data, other)
expected = pd.arrays.BooleanArray(values, left._mask, copy=True)
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
result[0] = pd.NA
tm.assert_extension_array_equal(left, pd.array([1, 0, None], dtype=dtype))
class NumericOps:
# Shared by IntegerArray and FloatingArray, not BooleanArray
def test_searchsorted_nan(self, dtype):
# The base class casts to object dtype, for which searchsorted returns
# 0 from the left and 10 from the right.
arr = pd.array(range(10), dtype=dtype)
assert arr.searchsorted(np.nan, side="left") == 10
assert arr.searchsorted(np.nan, side="right") == 10
def test_no_shared_mask(self, data):
result = data + 1
assert not tm.shares_memory(result, data)
def test_array(self, comparison_op, dtype):
op = comparison_op
left = pd.array([0, 1, 2, None, None, None], dtype=dtype)
right = pd.array([0, 1, None, 0, 1, None], dtype=dtype)
result = op(left, right)
values = op(left._data, right._data)
mask = left._mask | right._mask
expected = pd.arrays.BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
result[0] = pd.NA
tm.assert_extension_array_equal(
left, pd.array([0, 1, 2, None, None, None], dtype=dtype)
)
tm.assert_extension_array_equal(
right, pd.array([0, 1, None, 0, 1, None], dtype=dtype)
)
def test_compare_with_booleanarray(self, comparison_op, dtype):
op = comparison_op
left = pd.array([True, False, None] * 3, dtype="boolean")
right = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype=dtype)
other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean")
expected = op(left, other)
result = op(left, right)
tm.assert_extension_array_equal(result, expected)
# reversed op
expected = op(other, left)
result = op(right, left)
tm.assert_extension_array_equal(result, expected)
def test_compare_to_string(self, dtype):
# GH#28930
ser = pd.Series([1, None], dtype=dtype)
result = ser == "a"
expected = pd.Series([False, pd.NA], dtype="boolean")
tm.assert_series_equal(result, expected)
def test_ufunc_with_out(self, dtype):
arr = pd.array([1, 2, 3], dtype=dtype)
arr2 = pd.array([1, 2, pd.NA], dtype=dtype)
mask = arr == arr
mask2 = arr2 == arr2
result = np.zeros(3, dtype=bool)
result |= mask
# If MaskedArray.__array_ufunc__ handled "out" appropriately,
# `result` should still be an ndarray.
assert isinstance(result, np.ndarray)
assert result.all()
# result |= mask worked because mask could be cast losslessly to
# boolean ndarray. mask2 can't, so this raises
result = np.zeros(3, dtype=bool)
msg = "Specify an appropriate 'na_value' for this dtype"
with pytest.raises(ValueError, match=msg):
result |= mask2
# addition
res = np.add(arr, arr2)
expected = pd.array([2, 4, pd.NA], dtype=dtype)
tm.assert_extension_array_equal(res, expected)
# when passing out=arr, we will modify 'arr' inplace.
res = np.add(arr, arr2, out=arr)
assert res is arr
tm.assert_extension_array_equal(res, expected)
tm.assert_extension_array_equal(arr, expected)
def test_mul_td64_array(self, dtype):
# GH#45622
arr = pd.array([1, 2, pd.NA], dtype=dtype)
other = np.arange(3, dtype=np.int64).view("m8[ns]")
result = arr * other
expected = pd.array([pd.Timedelta(0), pd.Timedelta(2), pd.NaT])
tm.assert_extension_array_equal(result, expected)