You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.1 KiB
155 lines
5.1 KiB
"""
|
|
Tests shared by MaskedArray subclasses.
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.tests.extension.base import BaseOpsUtil
|
|
|
|
|
|
class ComparisonOps(BaseOpsUtil):
|
|
def _compare_other(self, data, op, other):
|
|
# array
|
|
result = pd.Series(op(data, other))
|
|
expected = pd.Series(op(data._data, other), dtype="boolean")
|
|
|
|
# fill the nan locations
|
|
expected[data._mask] = pd.NA
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# series
|
|
ser = pd.Series(data)
|
|
result = op(ser, other)
|
|
|
|
# Set nullable dtype here to avoid upcasting when setting to pd.NA below
|
|
expected = op(pd.Series(data._data), other).astype("boolean")
|
|
|
|
# fill the nan locations
|
|
expected[data._mask] = pd.NA
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# subclass will override to parametrize 'other'
|
|
def test_scalar(self, other, comparison_op, dtype):
|
|
op = comparison_op
|
|
left = pd.array([1, 0, None], dtype=dtype)
|
|
|
|
result = op(left, other)
|
|
|
|
if other is pd.NA:
|
|
expected = pd.array([None, None, None], dtype="boolean")
|
|
else:
|
|
values = op(left._data, other)
|
|
expected = pd.arrays.BooleanArray(values, left._mask, copy=True)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# ensure we haven't mutated anything inplace
|
|
result[0] = pd.NA
|
|
tm.assert_extension_array_equal(left, pd.array([1, 0, None], dtype=dtype))
|
|
|
|
|
|
class NumericOps:
|
|
# Shared by IntegerArray and FloatingArray, not BooleanArray
|
|
|
|
def test_searchsorted_nan(self, dtype):
|
|
# The base class casts to object dtype, for which searchsorted returns
|
|
# 0 from the left and 10 from the right.
|
|
arr = pd.array(range(10), dtype=dtype)
|
|
|
|
assert arr.searchsorted(np.nan, side="left") == 10
|
|
assert arr.searchsorted(np.nan, side="right") == 10
|
|
|
|
def test_no_shared_mask(self, data):
|
|
result = data + 1
|
|
assert not tm.shares_memory(result, data)
|
|
|
|
def test_array(self, comparison_op, dtype):
|
|
op = comparison_op
|
|
|
|
left = pd.array([0, 1, 2, None, None, None], dtype=dtype)
|
|
right = pd.array([0, 1, None, 0, 1, None], dtype=dtype)
|
|
|
|
result = op(left, right)
|
|
values = op(left._data, right._data)
|
|
mask = left._mask | right._mask
|
|
|
|
expected = pd.arrays.BooleanArray(values, mask)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# ensure we haven't mutated anything inplace
|
|
result[0] = pd.NA
|
|
tm.assert_extension_array_equal(
|
|
left, pd.array([0, 1, 2, None, None, None], dtype=dtype)
|
|
)
|
|
tm.assert_extension_array_equal(
|
|
right, pd.array([0, 1, None, 0, 1, None], dtype=dtype)
|
|
)
|
|
|
|
def test_compare_with_booleanarray(self, comparison_op, dtype):
|
|
op = comparison_op
|
|
|
|
left = pd.array([True, False, None] * 3, dtype="boolean")
|
|
right = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype=dtype)
|
|
other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean")
|
|
|
|
expected = op(left, other)
|
|
result = op(left, right)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# reversed op
|
|
expected = op(other, left)
|
|
result = op(right, left)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
def test_compare_to_string(self, dtype):
|
|
# GH#28930
|
|
ser = pd.Series([1, None], dtype=dtype)
|
|
result = ser == "a"
|
|
expected = pd.Series([False, pd.NA], dtype="boolean")
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_ufunc_with_out(self, dtype):
|
|
arr = pd.array([1, 2, 3], dtype=dtype)
|
|
arr2 = pd.array([1, 2, pd.NA], dtype=dtype)
|
|
|
|
mask = arr == arr
|
|
mask2 = arr2 == arr2
|
|
|
|
result = np.zeros(3, dtype=bool)
|
|
result |= mask
|
|
# If MaskedArray.__array_ufunc__ handled "out" appropriately,
|
|
# `result` should still be an ndarray.
|
|
assert isinstance(result, np.ndarray)
|
|
assert result.all()
|
|
|
|
# result |= mask worked because mask could be cast losslessly to
|
|
# boolean ndarray. mask2 can't, so this raises
|
|
result = np.zeros(3, dtype=bool)
|
|
msg = "Specify an appropriate 'na_value' for this dtype"
|
|
with pytest.raises(ValueError, match=msg):
|
|
result |= mask2
|
|
|
|
# addition
|
|
res = np.add(arr, arr2)
|
|
expected = pd.array([2, 4, pd.NA], dtype=dtype)
|
|
tm.assert_extension_array_equal(res, expected)
|
|
|
|
# when passing out=arr, we will modify 'arr' inplace.
|
|
res = np.add(arr, arr2, out=arr)
|
|
assert res is arr
|
|
tm.assert_extension_array_equal(res, expected)
|
|
tm.assert_extension_array_equal(arr, expected)
|
|
|
|
def test_mul_td64_array(self, dtype):
|
|
# GH#45622
|
|
arr = pd.array([1, 2, pd.NA], dtype=dtype)
|
|
other = np.arange(3, dtype=np.int64).view("m8[ns]")
|
|
|
|
result = arr * other
|
|
expected = pd.array([pd.Timedelta(0), pd.Timedelta(2), pd.NaT])
|
|
tm.assert_extension_array_equal(result, expected)
|