You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

155 lines
5.1 KiB

"""
Tests shared by MaskedArray subclasses.
"""
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension.base import BaseOpsUtil
class ComparisonOps(BaseOpsUtil):
def _compare_other(self, data, op, other):
# array
result = pd.Series(op(data, other))
expected = pd.Series(op(data._data, other), dtype="boolean")
# fill the nan locations
expected[data._mask] = pd.NA
tm.assert_series_equal(result, expected)
# series
ser = pd.Series(data)
result = op(ser, other)
# Set nullable dtype here to avoid upcasting when setting to pd.NA below
expected = op(pd.Series(data._data), other).astype("boolean")
# fill the nan locations
expected[data._mask] = pd.NA
tm.assert_series_equal(result, expected)
# subclass will override to parametrize 'other'
def test_scalar(self, other, comparison_op, dtype):
op = comparison_op
left = pd.array([1, 0, None], dtype=dtype)
result = op(left, other)
if other is pd.NA:
expected = pd.array([None, None, None], dtype="boolean")
else:
values = op(left._data, other)
expected = pd.arrays.BooleanArray(values, left._mask, copy=True)
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
result[0] = pd.NA
tm.assert_extension_array_equal(left, pd.array([1, 0, None], dtype=dtype))
class NumericOps:
# Shared by IntegerArray and FloatingArray, not BooleanArray
def test_searchsorted_nan(self, dtype):
# The base class casts to object dtype, for which searchsorted returns
# 0 from the left and 10 from the right.
arr = pd.array(range(10), dtype=dtype)
assert arr.searchsorted(np.nan, side="left") == 10
assert arr.searchsorted(np.nan, side="right") == 10
def test_no_shared_mask(self, data):
result = data + 1
assert not tm.shares_memory(result, data)
def test_array(self, comparison_op, dtype):
op = comparison_op
left = pd.array([0, 1, 2, None, None, None], dtype=dtype)
right = pd.array([0, 1, None, 0, 1, None], dtype=dtype)
result = op(left, right)
values = op(left._data, right._data)
mask = left._mask | right._mask
expected = pd.arrays.BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
result[0] = pd.NA
tm.assert_extension_array_equal(
left, pd.array([0, 1, 2, None, None, None], dtype=dtype)
)
tm.assert_extension_array_equal(
right, pd.array([0, 1, None, 0, 1, None], dtype=dtype)
)
def test_compare_with_booleanarray(self, comparison_op, dtype):
op = comparison_op
left = pd.array([True, False, None] * 3, dtype="boolean")
right = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype=dtype)
other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean")
expected = op(left, other)
result = op(left, right)
tm.assert_extension_array_equal(result, expected)
# reversed op
expected = op(other, left)
result = op(right, left)
tm.assert_extension_array_equal(result, expected)
def test_compare_to_string(self, dtype):
# GH#28930
ser = pd.Series([1, None], dtype=dtype)
result = ser == "a"
expected = pd.Series([False, pd.NA], dtype="boolean")
tm.assert_series_equal(result, expected)
def test_ufunc_with_out(self, dtype):
arr = pd.array([1, 2, 3], dtype=dtype)
arr2 = pd.array([1, 2, pd.NA], dtype=dtype)
mask = arr == arr
mask2 = arr2 == arr2
result = np.zeros(3, dtype=bool)
result |= mask
# If MaskedArray.__array_ufunc__ handled "out" appropriately,
# `result` should still be an ndarray.
assert isinstance(result, np.ndarray)
assert result.all()
# result |= mask worked because mask could be cast losslessly to
# boolean ndarray. mask2 can't, so this raises
result = np.zeros(3, dtype=bool)
msg = "Specify an appropriate 'na_value' for this dtype"
with pytest.raises(ValueError, match=msg):
result |= mask2
# addition
res = np.add(arr, arr2)
expected = pd.array([2, 4, pd.NA], dtype=dtype)
tm.assert_extension_array_equal(res, expected)
# when passing out=arr, we will modify 'arr' inplace.
res = np.add(arr, arr2, out=arr)
assert res is arr
tm.assert_extension_array_equal(res, expected)
tm.assert_extension_array_equal(arr, expected)
def test_mul_td64_array(self, dtype):
# GH#45622
arr = pd.array([1, 2, pd.NA], dtype=dtype)
other = np.arange(3, dtype=np.int64).view("m8[ns]")
result = arr * other
expected = pd.array([pd.Timedelta(0), pd.Timedelta(2), pd.NaT])
tm.assert_extension_array_equal(result, expected)