You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
12 KiB

import tkinter as tk
from tkinter import filedialog, messagebox
from tkinter import Toplevel
from PIL import Image, ImageTk
import numpy as np
import cv2
import os
img_path = "" # 全局变量,用于存储图像路径
src = None # 全局变量,用于存储已选择的图像
img_label = None # 全局变量,用于存储显示选择的图片的标签
edge = None
FreqsmoWin = None
AirsmoWin = None
def select_image(root):
global img_path, src, img_label, edge
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
if img_path:
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
img_path_fixed = os.path.normpath(img_path)
# 图像输入
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
if src_temp is None:
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
return
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
# 检查 img_label 是否存在且有效
if img_label is None or not img_label.winfo_exists():
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
edge = Image.fromarray(src)
else:
messagebox.showerror("错误", "没有选择图片路径")
def show_selected_image(root):
global img_label
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
def changeSize(event, img, LabelPic):
img_aspect = img.shape[1] / img.shape[0]
new_aspect = event.width / event.height
if new_aspect > img_aspect:
new_width = int(event.height * img_aspect)
new_height = event.height
else:
new_width = event.width
new_height = int(event.width / img_aspect)
resized_image = cv2.resize(img, (new_width, new_height))
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
LabelPic.image = image1
LabelPic['image'] = image1
def savefile():
global edge
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
if not filename:
return
# 确保 edge 变量已定义
if edge is not None:
try:
edge.save(filename)
messagebox.showinfo("保存成功", "图片保存成功!")
except Exception as e:
messagebox.showerror("保存失败", f"无法保存图片: {e}")
else:
messagebox.showerror("保存失败", "没有图像可保存")
#频域平滑
def freq_smo(root):
global src, FreqsmoWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
# 理想低通滤波器
def Ideal_LowPassFilter(rows, cols, crow, ccol, D0=20):
# 创建一个与输入图像大小相同的空白图像
Ideal_LowPass = np.zeros((rows, cols), dtype=np.uint8)
# 创建理想低通滤波器
for i in range(rows):
for j in range(cols):
x = i - crow
y = j - ccol
D = np.sqrt(x**2 + y**2)
if D <= D0:
Ideal_LowPass[i, j] = 255
# 应用滤波器到频域表示
mask = Ideal_LowPass[:, :, np.newaxis]
fshift = dft_shift * mask
# 逆傅里叶变换以获得平滑后的图像
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
# 归一化图像到0-255
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
img_back = np.uint8(img_back)
return img_back
# 布特沃斯低通滤波器
def ButterWorth_LowPassFilter(rows, cols, crow, ccol, D0=20, n=2):
# 创建一个与输入图像大小相同的空白图像
ButterWorth_LowPass = np.zeros((rows, cols), dtype=np.uint8)
# 创建巴特沃斯低通滤波器
for i in range(rows):
for j in range(cols):
x = i - crow
y = j - ccol
D = np.sqrt(x ** 2 + y ** 2)
ButterWorth_LowPass[i, j] = 255 / (1 + (D / D0) ** (2 * n))
# 应用滤波器到频域表示
mask = ButterWorth_LowPass[:, :, np.newaxis]
fshift = dft_shift * mask
# 逆傅里叶变换以获得平滑后的图像
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
# 归一化图像到0-255
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
img_back = np.uint8(img_back)
return img_back
# 高斯低通滤波器
def Gauss_LowPassFilter(rows, cols, crow, ccol, D0=20):
# 创建一个与输入图像大小相同的空白图像
Gauss_LowPass = np.zeros((rows, cols), dtype=np.uint8)
# 创建高斯低通滤波器
for i in range(rows):
for j in range(cols):
x = i - crow
y = j - ccol
D = np.sqrt(x ** 2 + y ** 2)
Gauss_LowPass[i, j] = 255 * np.exp(-0.5 * (D ** 2) / (D0 ** 2))
# 应用滤波器到频域表示
mask = Gauss_LowPass[:, :, np.newaxis]
fshift = dft_shift * mask
# 逆傅里叶变换以获得平滑后的图像
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
# 归一化图像到0-255
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
img_back = np.uint8(img_back)
return img_back
# 读取灰度图像
im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 获取图像的频域表示
dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 获取图像的尺寸
rows, cols = im.shape
crow, ccol = rows // 2, cols // 2
# 理想低通滤波器
Ideal_LowPass = Ideal_LowPassFilter(rows, cols, crow, ccol)
# 巴特沃斯低通滤波器
ButterWorth_LowPass = ButterWorth_LowPassFilter(rows, cols, crow, ccol)
# 高斯低通滤波器
Gauss_LowPass = Gauss_LowPassFilter(rows, cols, crow, ccol)
combined = np.hstack((Ideal_LowPass, ButterWorth_LowPass, Gauss_LowPass))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
FreqsmoWin.destroy()
except Exception as e:
print("NVM")
finally:
FreqsmoWin = Toplevel()
FreqsmoWin.attributes('-topmost', True)
FreqsmoWin.geometry("720x300")
FreqsmoWin.resizable(True, True) # 可缩放
FreqsmoWin.title("频域平滑结果")
# 显示图像
LabelPic = tk.Label(FreqsmoWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(FreqsmoWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
#空域平滑
def air_smo(root):
global src, AirsmoWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
# 均值平滑滤波
def mean_filter(image, height, width):
# 创建空白图像以存储滤波结果
filtered_image = np.zeros((height - 2, width - 2), dtype=np.uint8)
# 执行3x3均值滤波
for i in range(1, height - 1):
for j in range(1, width - 1):
tmp = (int(image[i - 1, j - 1]) + int(image[i - 1, j]) + int(image[i - 1, j + 1]) +
int(image[i, j - 1]) + int(image[i, j]) + int(image[i, j + 1]) +
int(image[i + 1, j - 1]) + int(image[i + 1, j]) + int(image[i + 1, j + 1])) // 9
filtered_image[i - 1, j - 1] = tmp
return filtered_image
# 中值平滑滤波
def median_filter(image, height, width):
# 创建空白图像以存储滤波结果
filtered_image = np.zeros((height - 2, width - 2), dtype=np.uint8)
# 执行3x3中值滤波
for i in range(1, height - 1):
for j in range(1, width - 1):
# 取3x3邻域
region = [
image[i - 1, j - 1], image[i - 1, j], image[i - 1, j + 1],
image[i, j - 1], image[i, j], image[i, j + 1],
image[i + 1, j - 1], image[i + 1, j], image[i + 1, j + 1]
]
# 计算中值
filtered_image[i - 1, j - 1] = np.median(region)
return filtered_image
# 5x5 中值平滑滤波
def med_filter_5x5(image, height, width):
# 创建空白图像以存储滤波结果
filtered_image = np.zeros((height - 4, width - 4), dtype=np.uint8)
# 执行5x5中值滤波
for i in range(2, height - 2):
for j in range(2, width - 2):
# 取5x5邻域的所有值
neighbors = [
image[i - 2, j - 2], image[i - 2, j - 1], image[i - 2, j], image[i - 2, j + 1], image[i - 2, j + 2],
image[i - 1, j - 2], image[i - 1, j - 1], image[i - 1, j], image[i - 1, j + 1], image[i - 1, j + 2],
image[i, j - 2], image[i, j - 1], image[i, j], image[i, j + 1], image[i, j + 2],
image[i + 1, j - 2], image[i + 1, j - 1], image[i + 1, j], image[i + 1, j + 1], image[i + 1, j + 2],
image[i + 2, j - 2], image[i + 2, j - 1], image[i + 2, j], image[i + 2, j + 1], image[i + 2, j + 2]
]
# 计算中值
filtered_image[i - 2, j - 2] = np.median(neighbors)
return filtered_image
# 读取灰度图像
im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 获取图像尺寸
height, width = im.shape
# 邻域平均
mean = mean_filter(im, height, width)
# 中值滤波3x3
median = median_filter(im, height, width)
# 中值滤波5x5
med = med_filter_5x5(im, height, width)
min_height = min(mean.shape[0], median.shape[0], med.shape[0])
min_width = min(mean.shape[1], median.shape[1], med.shape[1])
mean_cropped = mean[:min_height, :min_width]
median_cropped = median[:min_height, :min_width]
med_cropped = med[:min_height, :min_width]
combined = np.hstack((mean_cropped, median_cropped, med_cropped))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
AirsmoWin.destroy()
except Exception as e:
print("NVM")
finally:
AirsmoWin = Toplevel()
AirsmoWin.attributes('-topmost', True)
AirsmoWin.geometry("720x300")
AirsmoWin.resizable(True, True) # 可缩放
AirsmoWin.title("空域平滑结果")
# 显示图像
LabelPic = tk.Label(AirsmoWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(AirsmoWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return