|  |  |  | @ -0,0 +1,372 @@ | 
			
		
	
		
			
				
					|  |  |  |  | import tkinter as tk | 
			
		
	
		
			
				
					|  |  |  |  | from tkinter import filedialog, messagebox | 
			
		
	
		
			
				
					|  |  |  |  | from tkinter import Toplevel | 
			
		
	
		
			
				
					|  |  |  |  | from PIL import Image, ImageTk | 
			
		
	
		
			
				
					|  |  |  |  | import numpy as np | 
			
		
	
		
			
				
					|  |  |  |  | import cv2 | 
			
		
	
		
			
				
					|  |  |  |  | import os | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | img_path = ""  # 全局变量,用于存储图像路径 | 
			
		
	
		
			
				
					|  |  |  |  | src = None  # 全局变量,用于存储已选择的图像 | 
			
		
	
		
			
				
					|  |  |  |  | img_label = None  # 全局变量,用于存储显示选择的图片的标签 | 
			
		
	
		
			
				
					|  |  |  |  | edge = None | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | FreqsharWin = 0 | 
			
		
	
		
			
				
					|  |  |  |  | AirsharWin = 0 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | def select_image(root): | 
			
		
	
		
			
				
					|  |  |  |  |     global img_path, src, img_label, edge | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")]) | 
			
		
	
		
			
				
					|  |  |  |  |     if img_path: | 
			
		
	
		
			
				
					|  |  |  |  |         # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径 | 
			
		
	
		
			
				
					|  |  |  |  |         img_path_fixed = os.path.normpath(img_path) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 图像输入 | 
			
		
	
		
			
				
					|  |  |  |  |         src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED) | 
			
		
	
		
			
				
					|  |  |  |  |         if src_temp is None: | 
			
		
	
		
			
				
					|  |  |  |  |             messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径") | 
			
		
	
		
			
				
					|  |  |  |  |             return | 
			
		
	
		
			
				
					|  |  |  |  |         src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 检查 img_label 是否存在且有效 | 
			
		
	
		
			
				
					|  |  |  |  |         if img_label is None or not img_label.winfo_exists(): | 
			
		
	
		
			
				
					|  |  |  |  |             img_label = tk.Label(root) | 
			
		
	
		
			
				
					|  |  |  |  |             img_label.pack(side=tk.TOP, pady=10) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         img = Image.open(img_path) | 
			
		
	
		
			
				
					|  |  |  |  |         img.thumbnail((160, 160)) | 
			
		
	
		
			
				
					|  |  |  |  |         img_tk = ImageTk.PhotoImage(img) | 
			
		
	
		
			
				
					|  |  |  |  |         img_label.configure(image=img_tk) | 
			
		
	
		
			
				
					|  |  |  |  |         img_label.image = img_tk | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 定义 edge 变量为 PIL.Image 对象,以便稍后保存 | 
			
		
	
		
			
				
					|  |  |  |  |         edge = Image.fromarray(src) | 
			
		
	
		
			
				
					|  |  |  |  |     else: | 
			
		
	
		
			
				
					|  |  |  |  |         messagebox.showerror("错误", "没有选择图片路径") | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | def select_image(root): | 
			
		
	
		
			
				
					|  |  |  |  |     global img_path, src, img_label | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")]) | 
			
		
	
		
			
				
					|  |  |  |  |     if img_path: | 
			
		
	
		
			
				
					|  |  |  |  |         # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径 | 
			
		
	
		
			
				
					|  |  |  |  |         img_path_fixed = os.path.normpath(img_path) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 图像输入 | 
			
		
	
		
			
				
					|  |  |  |  |         src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED) | 
			
		
	
		
			
				
					|  |  |  |  |         if src_temp is None: | 
			
		
	
		
			
				
					|  |  |  |  |             messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径") | 
			
		
	
		
			
				
					|  |  |  |  |             return | 
			
		
	
		
			
				
					|  |  |  |  |         src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 检查 img_label 是否存在且有效 | 
			
		
	
		
			
				
					|  |  |  |  |         if img_label is None or not img_label.winfo_exists(): | 
			
		
	
		
			
				
					|  |  |  |  |             img_label = tk.Label(root) | 
			
		
	
		
			
				
					|  |  |  |  |             img_label.pack(side=tk.TOP, pady=10) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         img = Image.open(img_path) | 
			
		
	
		
			
				
					|  |  |  |  |         img.thumbnail((160, 160)) | 
			
		
	
		
			
				
					|  |  |  |  |         img_tk = ImageTk.PhotoImage(img) | 
			
		
	
		
			
				
					|  |  |  |  |         img_label.configure(image=img_tk) | 
			
		
	
		
			
				
					|  |  |  |  |         img_label.image = img_tk | 
			
		
	
		
			
				
					|  |  |  |  |         src = cv2.cvtColor(src, cv2.COLOR_BGR2RGB) | 
			
		
	
		
			
				
					|  |  |  |  |     else: | 
			
		
	
		
			
				
					|  |  |  |  |         messagebox.showerror("错误", "没有选择图片路径") | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | def show_selected_image(root): | 
			
		
	
		
			
				
					|  |  |  |  |     global img_label | 
			
		
	
		
			
				
					|  |  |  |  |     img_label = tk.Label(root) | 
			
		
	
		
			
				
					|  |  |  |  |     img_label.pack(side=tk.TOP, pady=10) | 
			
		
	
		
			
				
					|  |  |  |  |     img = Image.open(img_path) | 
			
		
	
		
			
				
					|  |  |  |  |     img.thumbnail((200, 200)) | 
			
		
	
		
			
				
					|  |  |  |  |     img_tk = ImageTk.PhotoImage(img) | 
			
		
	
		
			
				
					|  |  |  |  |     img_label.configure(image=img_tk) | 
			
		
	
		
			
				
					|  |  |  |  |     img_label.image = img_tk | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | def changeSize(event, img, LabelPic): | 
			
		
	
		
			
				
					|  |  |  |  |     img_aspect = img.shape[1] / img.shape[0] | 
			
		
	
		
			
				
					|  |  |  |  |     new_aspect = event.width / event.height | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     if new_aspect > img_aspect: | 
			
		
	
		
			
				
					|  |  |  |  |         new_width = int(event.height * img_aspect) | 
			
		
	
		
			
				
					|  |  |  |  |         new_height = event.height | 
			
		
	
		
			
				
					|  |  |  |  |     else: | 
			
		
	
		
			
				
					|  |  |  |  |         new_width = event.width | 
			
		
	
		
			
				
					|  |  |  |  |         new_height = int(event.width / img_aspect) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     resized_image = cv2.resize(img, (new_width, new_height)) | 
			
		
	
		
			
				
					|  |  |  |  |     image1 = ImageTk.PhotoImage(Image.fromarray(resized_image)) | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.image = image1 | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic['image'] = image1 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | def savefile(): | 
			
		
	
		
			
				
					|  |  |  |  |     global edge | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")]) | 
			
		
	
		
			
				
					|  |  |  |  |     if not filename: | 
			
		
	
		
			
				
					|  |  |  |  |         return | 
			
		
	
		
			
				
					|  |  |  |  |     # 确保 edge 变量已定义 | 
			
		
	
		
			
				
					|  |  |  |  |     if edge is not None: | 
			
		
	
		
			
				
					|  |  |  |  |         try: | 
			
		
	
		
			
				
					|  |  |  |  |             edge.save(filename) | 
			
		
	
		
			
				
					|  |  |  |  |             messagebox.showinfo("保存成功", "图片保存成功!") | 
			
		
	
		
			
				
					|  |  |  |  |         except Exception as e: | 
			
		
	
		
			
				
					|  |  |  |  |             messagebox.showerror("保存失败", f"无法保存图片: {e}") | 
			
		
	
		
			
				
					|  |  |  |  |     else: | 
			
		
	
		
			
				
					|  |  |  |  |         messagebox.showerror("保存失败", "没有图像可保存") | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | #频域锐化 | 
			
		
	
		
			
				
					|  |  |  |  | def freq_shar(root): | 
			
		
	
		
			
				
					|  |  |  |  |     global src, FreqsharWin, edge | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 判断是否已经选取图片 | 
			
		
	
		
			
				
					|  |  |  |  |     if src is None: | 
			
		
	
		
			
				
					|  |  |  |  |         messagebox.showerror("错误", "没有选择图片!") | 
			
		
	
		
			
				
					|  |  |  |  |         return | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     def Ideal_HighPassFilter(rows, cols, crow, ccol, D0=40): | 
			
		
	
		
			
				
					|  |  |  |  |         # 创建空白图像以存储滤波结果 | 
			
		
	
		
			
				
					|  |  |  |  |         Ideal_HighPass = np.zeros((rows, cols), np.uint8) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 计算理想高通滤波器 | 
			
		
	
		
			
				
					|  |  |  |  |         for i in range(rows): | 
			
		
	
		
			
				
					|  |  |  |  |             for j in range(cols): | 
			
		
	
		
			
				
					|  |  |  |  |                 D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2) | 
			
		
	
		
			
				
					|  |  |  |  |                 if D >= D0: | 
			
		
	
		
			
				
					|  |  |  |  |                     Ideal_HighPass[i, j] = 255 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 应用滤波器到频域表示 | 
			
		
	
		
			
				
					|  |  |  |  |         mask = Ideal_HighPass[:, :, np.newaxis] | 
			
		
	
		
			
				
					|  |  |  |  |         fshift = dft_shift * mask | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 逆傅里叶变换以获得处理后的图像 | 
			
		
	
		
			
				
					|  |  |  |  |         f_ishift = np.fft.ifftshift(fshift) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = cv2.idft(f_ishift) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 归一化图像到0-255 | 
			
		
	
		
			
				
					|  |  |  |  |         cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = np.uint8(img_back) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         return img_back | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     def ButterWorth_HighPassFilter(rows, cols, crow, ccol, D0=40, n=2): | 
			
		
	
		
			
				
					|  |  |  |  |         # 创建空白图像以存储滤波结果 | 
			
		
	
		
			
				
					|  |  |  |  |         ButterWorth_HighPass = np.zeros((rows, cols), np.uint8) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 计算 Butterworth 高通滤波器 | 
			
		
	
		
			
				
					|  |  |  |  |         for i in range(rows): | 
			
		
	
		
			
				
					|  |  |  |  |             for j in range(cols): | 
			
		
	
		
			
				
					|  |  |  |  |                 D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2) | 
			
		
	
		
			
				
					|  |  |  |  |                 if D == 0: | 
			
		
	
		
			
				
					|  |  |  |  |                     ButterWorth_HighPass[i, j] = 0  # 如果 D = 0,直接赋值为 0,避免除以零错误 | 
			
		
	
		
			
				
					|  |  |  |  |                 else: | 
			
		
	
		
			
				
					|  |  |  |  |                     ButterWorth_HighPass[i, j] = 255 / (1 + (D0 / D) ** (2 * n)) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 应用滤波器到频域表示 | 
			
		
	
		
			
				
					|  |  |  |  |         mask = ButterWorth_HighPass[:, :, np.newaxis] | 
			
		
	
		
			
				
					|  |  |  |  |         fshift = dft_shift * mask | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 逆傅里叶变换以获得处理后的图像 | 
			
		
	
		
			
				
					|  |  |  |  |         f_ishift = np.fft.ifftshift(fshift) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = cv2.idft(f_ishift) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 归一化图像到0-255 | 
			
		
	
		
			
				
					|  |  |  |  |         cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = np.uint8(img_back) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         return img_back | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     def Gauss_HighPassFilter(rows, cols, crow, ccol, D0=40): | 
			
		
	
		
			
				
					|  |  |  |  |         # 创建空白图像以存储滤波结果 | 
			
		
	
		
			
				
					|  |  |  |  |         Gauss_HighPass = np.zeros((rows, cols), np.uint8) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 计算 Gauss 高通滤波器 | 
			
		
	
		
			
				
					|  |  |  |  |         for i in range(rows): | 
			
		
	
		
			
				
					|  |  |  |  |             for j in range(cols): | 
			
		
	
		
			
				
					|  |  |  |  |                 D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2) | 
			
		
	
		
			
				
					|  |  |  |  |                 Gauss_HighPass[i, j] = 255 * (1 - np.exp(-0.5 * (D ** 2) / (D0 ** 2))) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 应用滤波器到频域表示 | 
			
		
	
		
			
				
					|  |  |  |  |         mask = Gauss_HighPass[:, :, np.newaxis] | 
			
		
	
		
			
				
					|  |  |  |  |         fshift = dft_shift * mask | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 逆傅里叶变换以获得平滑后的图像 | 
			
		
	
		
			
				
					|  |  |  |  |         f_ishift = np.fft.ifftshift(fshift) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = cv2.idft(f_ishift) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 归一化图像到0-255 | 
			
		
	
		
			
				
					|  |  |  |  |         cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) | 
			
		
	
		
			
				
					|  |  |  |  |         img_back = np.uint8(img_back) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         return img_back | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 读取灰度图像 | 
			
		
	
		
			
				
					|  |  |  |  |     im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 获取图像尺寸 | 
			
		
	
		
			
				
					|  |  |  |  |     rows, cols = im.shape | 
			
		
	
		
			
				
					|  |  |  |  |     crow, ccol = rows // 2, cols // 2  # 中心位置 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 获取图像的频域表示 | 
			
		
	
		
			
				
					|  |  |  |  |     dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT) | 
			
		
	
		
			
				
					|  |  |  |  |     dft_shift = np.fft.fftshift(dft) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 理想高通滤波器 | 
			
		
	
		
			
				
					|  |  |  |  |     Ideal_HighPass = Ideal_HighPassFilter(rows, cols, crow, ccol) | 
			
		
	
		
			
				
					|  |  |  |  |     # 巴特沃斯高通滤波器 | 
			
		
	
		
			
				
					|  |  |  |  |     ButterWorth_HighPass = ButterWorth_HighPassFilter(rows, cols, crow, ccol) | 
			
		
	
		
			
				
					|  |  |  |  |     # 高斯高通滤波器 | 
			
		
	
		
			
				
					|  |  |  |  |     Gauss_HighPass = Gauss_HighPassFilter(rows, cols, crow, ccol) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     combined = np.hstack((Ideal_HighPass, ButterWorth_HighPass, Gauss_HighPass)) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 更新 edge 变量 | 
			
		
	
		
			
				
					|  |  |  |  |     edge = Image.fromarray(combined) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 创建Toplevel窗口 | 
			
		
	
		
			
				
					|  |  |  |  |     try: | 
			
		
	
		
			
				
					|  |  |  |  |         FreqsharWin.destroy() | 
			
		
	
		
			
				
					|  |  |  |  |     except Exception as e: | 
			
		
	
		
			
				
					|  |  |  |  |         print("NVM") | 
			
		
	
		
			
				
					|  |  |  |  |     finally: | 
			
		
	
		
			
				
					|  |  |  |  |         FreqsharWin = Toplevel() | 
			
		
	
		
			
				
					|  |  |  |  |         FreqsharWin.attributes('-topmost', True) | 
			
		
	
		
			
				
					|  |  |  |  |     FreqsharWin.geometry("720x300") | 
			
		
	
		
			
				
					|  |  |  |  |     FreqsharWin.resizable(True, True)  # 可缩放 | 
			
		
	
		
			
				
					|  |  |  |  |     FreqsharWin.title("频域锐化结果") | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 显示图像 | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic = tk.Label(FreqsharWin, text="IMG", width=720, height=240) | 
			
		
	
		
			
				
					|  |  |  |  |     image = ImageTk.PhotoImage(Image.fromarray(combined)) | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.image = image | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic['image'] = image | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic)) | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.pack(fill=tk.BOTH, expand=tk.YES) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 添加保存按钮 | 
			
		
	
		
			
				
					|  |  |  |  |     btn_save = tk.Button(FreqsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, | 
			
		
	
		
			
				
					|  |  |  |  |                          command=savefile) | 
			
		
	
		
			
				
					|  |  |  |  |     btn_save.pack(pady=10) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     return | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | #空域锐化 | 
			
		
	
		
			
				
					|  |  |  |  | def air_shar(root): | 
			
		
	
		
			
				
					|  |  |  |  |     global src, AirsharWin, edge | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 判断是否已经选取图片 | 
			
		
	
		
			
				
					|  |  |  |  |     if src is None: | 
			
		
	
		
			
				
					|  |  |  |  |         messagebox.showerror("错误", "没有选择图片!") | 
			
		
	
		
			
				
					|  |  |  |  |         return | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     def Roberts(Image_In, height, width): | 
			
		
	
		
			
				
					|  |  |  |  |         # 创建输出图像 | 
			
		
	
		
			
				
					|  |  |  |  |         Roberts = np.zeros((height - 1, width - 1), dtype=np.uint8) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 进行Roberts边缘检测 | 
			
		
	
		
			
				
					|  |  |  |  |         for i in range(height - 1): | 
			
		
	
		
			
				
					|  |  |  |  |             for j in range(width - 1): | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp = abs(int(Image_In[i + 1, j + 1]) - int(Image_In[i, j])) + abs( | 
			
		
	
		
			
				
					|  |  |  |  |                     int(Image_In[i + 1, j]) - int(Image_In[i, j + 1])) | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp = max(0, min(255, tmp))  # 确保结果在0到255之间 | 
			
		
	
		
			
				
					|  |  |  |  |                 Roberts[i, j] = tmp | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         return Roberts | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     def Sobel(Image_In, height, width): | 
			
		
	
		
			
				
					|  |  |  |  |         # 创建输出图像 | 
			
		
	
		
			
				
					|  |  |  |  |         Image_Sobel = np.zeros((height - 2, width - 2), dtype=np.uint8) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 进行Sobel边缘检测 | 
			
		
	
		
			
				
					|  |  |  |  |         for i in range(1, height - 1): | 
			
		
	
		
			
				
					|  |  |  |  |             for j in range(1, width - 1): | 
			
		
	
		
			
				
					|  |  |  |  |                 # 使用Sobel算子计算水平和垂直方向的梯度 | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp1 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) + | 
			
		
	
		
			
				
					|  |  |  |  |                            int(Image_In[i + 1, j - 1]) + 2 * int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1])) | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp2 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) + | 
			
		
	
		
			
				
					|  |  |  |  |                            int(Image_In[i - 1, j + 1]) + 2 * int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1])) | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp = tmp1 + tmp2 | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp = max(0, min(255, tmp))  # 确保结果在0到255之间 | 
			
		
	
		
			
				
					|  |  |  |  |                 Image_Sobel[i - 1, j - 1] = tmp | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         return Image_Sobel | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     def Prewitt(Image_In, height, width): | 
			
		
	
		
			
				
					|  |  |  |  |         # 创建输出图像 | 
			
		
	
		
			
				
					|  |  |  |  |         Image_Prewitt = np.zeros((height - 2, width - 2), dtype=np.uint8) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         # 进行Prewitt边缘检测 | 
			
		
	
		
			
				
					|  |  |  |  |         for i in range(1, height - 1): | 
			
		
	
		
			
				
					|  |  |  |  |             for j in range(1, width - 1): | 
			
		
	
		
			
				
					|  |  |  |  |                 # 使用Prewitt算子计算水平和垂直方向的梯度 | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp1 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) + | 
			
		
	
		
			
				
					|  |  |  |  |                            int(Image_In[i + 1, j - 1]) + int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1])) | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp2 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) + | 
			
		
	
		
			
				
					|  |  |  |  |                            int(Image_In[i - 1, j + 1]) + int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1])) | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp = tmp1 + tmp2 | 
			
		
	
		
			
				
					|  |  |  |  |                 tmp = max(0, min(255, tmp))  # 确保结果在0到255之间 | 
			
		
	
		
			
				
					|  |  |  |  |                 Image_Prewitt[i - 1, j - 1] = tmp | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         return Image_Prewitt | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 获取图像的尺寸 | 
			
		
	
		
			
				
					|  |  |  |  |     height, width = im.shape | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # Roberts | 
			
		
	
		
			
				
					|  |  |  |  |     Rob = Roberts(im, height, width) | 
			
		
	
		
			
				
					|  |  |  |  |     # Sobel | 
			
		
	
		
			
				
					|  |  |  |  |     Sob = Sobel(im, height, width) | 
			
		
	
		
			
				
					|  |  |  |  |     # Prewitt | 
			
		
	
		
			
				
					|  |  |  |  |     Pre = Prewitt(im, height, width) | 
			
		
	
		
			
				
					|  |  |  |  |     # # Laplacian | 
			
		
	
		
			
				
					|  |  |  |  |     # Lap = Laplacian(im, height, width) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 找出最小的尺寸 | 
			
		
	
		
			
				
					|  |  |  |  |     min_height = min(Rob.shape[0], Sob.shape[0], Pre.shape[0]) | 
			
		
	
		
			
				
					|  |  |  |  |     min_width = min(Rob.shape[1], Sob.shape[1], Pre.shape[1]) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 对所有结果进行裁剪,使它们的尺寸一致 | 
			
		
	
		
			
				
					|  |  |  |  |     Rob = Rob[:min_height, :min_width] | 
			
		
	
		
			
				
					|  |  |  |  |     Sob = Sob[:min_height, :min_width] | 
			
		
	
		
			
				
					|  |  |  |  |     Pre = Pre[:min_height, :min_width] | 
			
		
	
		
			
				
					|  |  |  |  |     # Lap = Lap[:min_height, :min_width] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     combined = np.hstack((Rob, Sob, Pre)) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 更新 edge 变量 | 
			
		
	
		
			
				
					|  |  |  |  |     edge = Image.fromarray(combined) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 创建Toplevel窗口 | 
			
		
	
		
			
				
					|  |  |  |  |     try: | 
			
		
	
		
			
				
					|  |  |  |  |         AirsharWin.destroy() | 
			
		
	
		
			
				
					|  |  |  |  |     except Exception as e: | 
			
		
	
		
			
				
					|  |  |  |  |         print("NVM") | 
			
		
	
		
			
				
					|  |  |  |  |     finally: | 
			
		
	
		
			
				
					|  |  |  |  |         AirsharWin = Toplevel() | 
			
		
	
		
			
				
					|  |  |  |  |         AirsharWin.attributes('-topmost', True) | 
			
		
	
		
			
				
					|  |  |  |  |     AirsharWin.geometry("720x300") | 
			
		
	
		
			
				
					|  |  |  |  |     AirsharWin.resizable(True, True)  # 可缩放 | 
			
		
	
		
			
				
					|  |  |  |  |     AirsharWin.title("空域锐化结果") | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 显示图像 | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic = tk.Label(AirsharWin, text="IMG", width=720, height=240) | 
			
		
	
		
			
				
					|  |  |  |  |     image = ImageTk.PhotoImage(Image.fromarray(combined)) | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.image = image | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic['image'] = image | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic)) | 
			
		
	
		
			
				
					|  |  |  |  |     LabelPic.pack(fill=tk.BOTH, expand=tk.YES) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     # 添加保存按钮 | 
			
		
	
		
			
				
					|  |  |  |  |     btn_save = tk.Button(AirsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, | 
			
		
	
		
			
				
					|  |  |  |  |                          command=savefile) | 
			
		
	
		
			
				
					|  |  |  |  |     btn_save.pack(pady=10) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     return |