|
|
@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
import tkinter as tk
|
|
|
|
|
|
|
|
from tkinter import filedialog, messagebox
|
|
|
|
|
|
|
|
from tkinter import Toplevel
|
|
|
|
|
|
|
|
from PIL import Image, ImageTk
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_path = "" # 全局变量,用于存储图像路径
|
|
|
|
|
|
|
|
src = None # 全局变量,用于存储已选择的图像
|
|
|
|
|
|
|
|
img_label = None # 全局变量,用于存储显示选择的图片的标签
|
|
|
|
|
|
|
|
edge = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FreqsharWin = 0
|
|
|
|
|
|
|
|
AirsharWin = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def select_image(root):
|
|
|
|
|
|
|
|
global img_path, src, img_label, edge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
|
|
|
|
|
|
|
|
if img_path:
|
|
|
|
|
|
|
|
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
|
|
|
|
|
|
|
|
img_path_fixed = os.path.normpath(img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 图像输入
|
|
|
|
|
|
|
|
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
|
|
|
|
|
|
|
|
if src_temp is None:
|
|
|
|
|
|
|
|
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 检查 img_label 是否存在且有效
|
|
|
|
|
|
|
|
if img_label is None or not img_label.winfo_exists():
|
|
|
|
|
|
|
|
img_label = tk.Label(root)
|
|
|
|
|
|
|
|
img_label.pack(side=tk.TOP, pady=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = Image.open(img_path)
|
|
|
|
|
|
|
|
img.thumbnail((160, 160))
|
|
|
|
|
|
|
|
img_tk = ImageTk.PhotoImage(img)
|
|
|
|
|
|
|
|
img_label.configure(image=img_tk)
|
|
|
|
|
|
|
|
img_label.image = img_tk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
|
|
|
|
|
|
|
|
edge = Image.fromarray(src)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
messagebox.showerror("错误", "没有选择图片路径")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def select_image(root):
|
|
|
|
|
|
|
|
global img_path, src, img_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
|
|
|
|
|
|
|
|
if img_path:
|
|
|
|
|
|
|
|
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
|
|
|
|
|
|
|
|
img_path_fixed = os.path.normpath(img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 图像输入
|
|
|
|
|
|
|
|
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
|
|
|
|
|
|
|
|
if src_temp is None:
|
|
|
|
|
|
|
|
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 检查 img_label 是否存在且有效
|
|
|
|
|
|
|
|
if img_label is None or not img_label.winfo_exists():
|
|
|
|
|
|
|
|
img_label = tk.Label(root)
|
|
|
|
|
|
|
|
img_label.pack(side=tk.TOP, pady=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = Image.open(img_path)
|
|
|
|
|
|
|
|
img.thumbnail((160, 160))
|
|
|
|
|
|
|
|
img_tk = ImageTk.PhotoImage(img)
|
|
|
|
|
|
|
|
img_label.configure(image=img_tk)
|
|
|
|
|
|
|
|
img_label.image = img_tk
|
|
|
|
|
|
|
|
src = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
messagebox.showerror("错误", "没有选择图片路径")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def show_selected_image(root):
|
|
|
|
|
|
|
|
global img_label
|
|
|
|
|
|
|
|
img_label = tk.Label(root)
|
|
|
|
|
|
|
|
img_label.pack(side=tk.TOP, pady=10)
|
|
|
|
|
|
|
|
img = Image.open(img_path)
|
|
|
|
|
|
|
|
img.thumbnail((200, 200))
|
|
|
|
|
|
|
|
img_tk = ImageTk.PhotoImage(img)
|
|
|
|
|
|
|
|
img_label.configure(image=img_tk)
|
|
|
|
|
|
|
|
img_label.image = img_tk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def changeSize(event, img, LabelPic):
|
|
|
|
|
|
|
|
img_aspect = img.shape[1] / img.shape[0]
|
|
|
|
|
|
|
|
new_aspect = event.width / event.height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if new_aspect > img_aspect:
|
|
|
|
|
|
|
|
new_width = int(event.height * img_aspect)
|
|
|
|
|
|
|
|
new_height = event.height
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
new_width = event.width
|
|
|
|
|
|
|
|
new_height = int(event.width / img_aspect)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
resized_image = cv2.resize(img, (new_width, new_height))
|
|
|
|
|
|
|
|
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
|
|
|
|
|
|
|
|
LabelPic.image = image1
|
|
|
|
|
|
|
|
LabelPic['image'] = image1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def savefile():
|
|
|
|
|
|
|
|
global edge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
|
|
|
|
|
|
|
|
if not filename:
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
# 确保 edge 变量已定义
|
|
|
|
|
|
|
|
if edge is not None:
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
edge.save(filename)
|
|
|
|
|
|
|
|
messagebox.showinfo("保存成功", "图片保存成功!")
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
|
|
messagebox.showerror("保存失败", f"无法保存图片: {e}")
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
messagebox.showerror("保存失败", "没有图像可保存")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#频域锐化
|
|
|
|
|
|
|
|
def freq_shar(root):
|
|
|
|
|
|
|
|
global src, FreqsharWin, edge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 判断是否已经选取图片
|
|
|
|
|
|
|
|
if src is None:
|
|
|
|
|
|
|
|
messagebox.showerror("错误", "没有选择图片!")
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 理想高通滤波
|
|
|
|
|
|
|
|
def Ideal_HighPassFilter(rows, cols, crow, ccol, D0=40):
|
|
|
|
|
|
|
|
# 创建空白图像以存储滤波结果
|
|
|
|
|
|
|
|
Ideal_HighPass = np.zeros((rows, cols), np.uint8)
|
|
|
|
|
|
|
|
# 计算理想高通滤波器
|
|
|
|
|
|
|
|
for i in range(rows):
|
|
|
|
|
|
|
|
for j in range(cols):
|
|
|
|
|
|
|
|
D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2)
|
|
|
|
|
|
|
|
if D >= D0:
|
|
|
|
|
|
|
|
Ideal_HighPass[i, j] = 255
|
|
|
|
|
|
|
|
# 应用滤波器到频域表示
|
|
|
|
|
|
|
|
mask = Ideal_HighPass[:, :, np.newaxis]
|
|
|
|
|
|
|
|
fshift = dft_shift * mask
|
|
|
|
|
|
|
|
# 逆傅里叶变换以获得处理后的图像
|
|
|
|
|
|
|
|
f_ishift = np.fft.ifftshift(fshift)
|
|
|
|
|
|
|
|
img_back = cv2.idft(f_ishift)
|
|
|
|
|
|
|
|
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
|
|
|
|
|
|
|
|
# 归一化图像到0-255
|
|
|
|
|
|
|
|
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
|
|
|
|
|
|
|
|
img_back = np.uint8(img_back)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return img_back
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#Butterworth高通滤波器
|
|
|
|
|
|
|
|
def ButterWorth_HighPassFilter(rows, cols, crow, ccol, D0=40, n=2):
|
|
|
|
|
|
|
|
# 创建空白图像以存储滤波结果
|
|
|
|
|
|
|
|
ButterWorth_HighPass = np.zeros((rows, cols), np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算 Butterworth 高通滤波器
|
|
|
|
|
|
|
|
for i in range(rows):
|
|
|
|
|
|
|
|
for j in range(cols):
|
|
|
|
|
|
|
|
D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2)
|
|
|
|
|
|
|
|
if D == 0:
|
|
|
|
|
|
|
|
ButterWorth_HighPass[i, j] = 0 # 如果 D = 0,直接赋值为 0,避免除以零错误
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
ButterWorth_HighPass[i, j] = 255 / (1 + (D0 / D) ** (2 * n))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 应用滤波器到频域表示
|
|
|
|
|
|
|
|
mask = ButterWorth_HighPass[:, :, np.newaxis]
|
|
|
|
|
|
|
|
fshift = dft_shift * mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 逆傅里叶变换以获得处理后的图像
|
|
|
|
|
|
|
|
f_ishift = np.fft.ifftshift(fshift)
|
|
|
|
|
|
|
|
img_back = cv2.idft(f_ishift)
|
|
|
|
|
|
|
|
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 归一化图像到0-255
|
|
|
|
|
|
|
|
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
|
|
|
|
|
|
|
|
img_back = np.uint8(img_back)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return img_back
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#Gauss高通滤波器
|
|
|
|
|
|
|
|
def Gauss_HighPassFilter(rows, cols, crow, ccol, D0=40):
|
|
|
|
|
|
|
|
# 创建空白图像以存储滤波结果
|
|
|
|
|
|
|
|
Gauss_HighPass = np.zeros((rows, cols), np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算 Gauss 高通滤波器
|
|
|
|
|
|
|
|
for i in range(rows):
|
|
|
|
|
|
|
|
for j in range(cols):
|
|
|
|
|
|
|
|
D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2)
|
|
|
|
|
|
|
|
Gauss_HighPass[i, j] = 255 * (1 - np.exp(-0.5 * (D ** 2) / (D0 ** 2)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 应用滤波器到频域表示
|
|
|
|
|
|
|
|
mask = Gauss_HighPass[:, :, np.newaxis]
|
|
|
|
|
|
|
|
fshift = dft_shift * mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 逆傅里叶变换以获得平滑后的图像
|
|
|
|
|
|
|
|
f_ishift = np.fft.ifftshift(fshift)
|
|
|
|
|
|
|
|
img_back = cv2.idft(f_ishift)
|
|
|
|
|
|
|
|
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 归一化图像到0-255
|
|
|
|
|
|
|
|
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
|
|
|
|
|
|
|
|
img_back = np.uint8(img_back)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return img_back
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 读取灰度图像
|
|
|
|
|
|
|
|
im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获取图像尺寸
|
|
|
|
|
|
|
|
rows, cols = im.shape
|
|
|
|
|
|
|
|
crow, ccol = rows // 2, cols // 2 # 中心位置
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获取图像的频域表示
|
|
|
|
|
|
|
|
dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT)
|
|
|
|
|
|
|
|
dft_shift = np.fft.fftshift(dft)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 理想高通滤波器
|
|
|
|
|
|
|
|
Ideal_HighPass = Ideal_HighPassFilter(rows, cols, crow, ccol)
|
|
|
|
|
|
|
|
# 巴特沃斯高通滤波器
|
|
|
|
|
|
|
|
ButterWorth_HighPass = ButterWorth_HighPassFilter(rows, cols, crow, ccol)
|
|
|
|
|
|
|
|
# 高斯高通滤波器
|
|
|
|
|
|
|
|
Gauss_HighPass = Gauss_HighPassFilter(rows, cols, crow, ccol)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
combined = np.hstack((Ideal_HighPass, ButterWorth_HighPass, Gauss_HighPass))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 更新 edge 变量
|
|
|
|
|
|
|
|
edge = Image.fromarray(combined)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 创建Toplevel窗口
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
FreqsharWin.destroy()
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
|
|
print("NVM")
|
|
|
|
|
|
|
|
finally:
|
|
|
|
|
|
|
|
FreqsharWin = Toplevel()
|
|
|
|
|
|
|
|
FreqsharWin.attributes('-topmost', True)
|
|
|
|
|
|
|
|
FreqsharWin.geometry("720x300")
|
|
|
|
|
|
|
|
FreqsharWin.resizable(True, True) # 可缩放
|
|
|
|
|
|
|
|
FreqsharWin.title("频域锐化结果")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 显示图像
|
|
|
|
|
|
|
|
LabelPic = tk.Label(FreqsharWin, text="IMG", width=720, height=240)
|
|
|
|
|
|
|
|
image = ImageTk.PhotoImage(Image.fromarray(combined))
|
|
|
|
|
|
|
|
LabelPic.image = image
|
|
|
|
|
|
|
|
LabelPic['image'] = image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
|
|
|
|
|
|
|
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 添加保存按钮
|
|
|
|
|
|
|
|
btn_save = tk.Button(FreqsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
|
|
|
|
|
|
|
command=savefile)
|
|
|
|
|
|
|
|
btn_save.pack(pady=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#空域锐化
|
|
|
|
|
|
|
|
def air_shar(root):
|
|
|
|
|
|
|
|
global src, AirsharWin, edge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 判断是否已经选取图片
|
|
|
|
|
|
|
|
if src is None:
|
|
|
|
|
|
|
|
messagebox.showerror("错误", "没有选择图片!")
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 定义Roberts边缘检测算子
|
|
|
|
|
|
|
|
def Roberts(Image_In, height, width):
|
|
|
|
|
|
|
|
# 创建输出图像
|
|
|
|
|
|
|
|
Roberts = np.zeros((height - 1, width - 1), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 进行Roberts边缘检测
|
|
|
|
|
|
|
|
for i in range(height - 1):
|
|
|
|
|
|
|
|
for j in range(width - 1):
|
|
|
|
|
|
|
|
# 计算Roberts响应
|
|
|
|
|
|
|
|
tmp = abs(int(Image_In[i + 1, j + 1]) - int(Image_In[i, j])) + abs(
|
|
|
|
|
|
|
|
int(Image_In[i + 1, j]) - int(Image_In[i, j + 1]))
|
|
|
|
|
|
|
|
tmp = max(0, min(255, tmp)) # 确保结果在0到255之间
|
|
|
|
|
|
|
|
Roberts[i, j] = tmp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return Roberts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 定义Sobel边缘检测算子
|
|
|
|
|
|
|
|
def Sobel(Image_In, height, width):
|
|
|
|
|
|
|
|
# 创建输出图像
|
|
|
|
|
|
|
|
Image_Sobel = np.zeros((height - 2, width - 2), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 进行Sobel边缘检测
|
|
|
|
|
|
|
|
for i in range(1, height - 1):
|
|
|
|
|
|
|
|
for j in range(1, width - 1):
|
|
|
|
|
|
|
|
# 使用Sobel算子计算水平和垂直方向的梯度
|
|
|
|
|
|
|
|
tmp1 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) +
|
|
|
|
|
|
|
|
int(Image_In[i + 1, j - 1]) + 2 * int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1]))
|
|
|
|
|
|
|
|
tmp2 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) +
|
|
|
|
|
|
|
|
int(Image_In[i - 1, j + 1]) + 2 * int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1]))
|
|
|
|
|
|
|
|
tmp = tmp1 + tmp2
|
|
|
|
|
|
|
|
tmp = max(0, min(255, tmp)) # 确保结果在0到255之间
|
|
|
|
|
|
|
|
Image_Sobel[i - 1, j - 1] = tmp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return Image_Sobel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 定义Prewitt边缘检测算子
|
|
|
|
|
|
|
|
def Prewitt(Image_In, height, width):
|
|
|
|
|
|
|
|
# 创建输出图像
|
|
|
|
|
|
|
|
Image_Prewitt = np.zeros((height - 2, width - 2), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 进行Prewitt边缘检测
|
|
|
|
|
|
|
|
for i in range(1, height - 1):
|
|
|
|
|
|
|
|
for j in range(1, width - 1):
|
|
|
|
|
|
|
|
# 使用Prewitt算子计算水平和垂直方向的梯度
|
|
|
|
|
|
|
|
tmp1 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) +
|
|
|
|
|
|
|
|
int(Image_In[i + 1, j - 1]) + int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1]))
|
|
|
|
|
|
|
|
tmp2 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) +
|
|
|
|
|
|
|
|
int(Image_In[i - 1, j + 1]) + int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1]))
|
|
|
|
|
|
|
|
tmp = tmp1 + tmp2
|
|
|
|
|
|
|
|
tmp = max(0, min(255, tmp)) # 确保结果在0到255之间
|
|
|
|
|
|
|
|
Image_Prewitt[i - 1, j - 1] = tmp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return Image_Prewitt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 将彩色图像转换为灰度图像
|
|
|
|
|
|
|
|
im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 获取图像的尺寸
|
|
|
|
|
|
|
|
height, width = im.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 使用各种算子进行边缘检测
|
|
|
|
|
|
|
|
Rob = Roberts(im, height, width) # Roberts算子
|
|
|
|
|
|
|
|
Sob = Sobel(im, height, width) # Sobel算子
|
|
|
|
|
|
|
|
Pre = Prewitt(im, height, width) # Prewitt算子
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 找出最小的尺寸,以便进行裁剪使得结果图像尺寸一致
|
|
|
|
|
|
|
|
min_height = min(Rob.shape[0], Sob.shape[0], Pre.shape[0])
|
|
|
|
|
|
|
|
min_width = min(Rob.shape[1], Sob.shape[1], Pre.shape[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 对所有结果进行裁剪,使它们的尺寸一致
|
|
|
|
|
|
|
|
Rob = Rob[:min_height, :min_width]
|
|
|
|
|
|
|
|
Sob = Sob[:min_height, :min_width]
|
|
|
|
|
|
|
|
Pre = Pre[:min_height, :min_width]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 将三种边缘检测结果水平拼接成一张图像
|
|
|
|
|
|
|
|
combined = np.hstack((Rob, Sob, Pre))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 更新 edge 变量,这里假设 edge 是用来存储结果图像的变量
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 创建Toplevel窗口用于显示结果
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
AirsharWin.destroy()
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
|
|
print("NVM")
|
|
|
|
|
|
|
|
finally:
|
|
|
|
|
|
|
|
AirsharWin = Toplevel()
|
|
|
|
|
|
|
|
AirsharWin.attributes('-topmost', True)
|
|
|
|
|
|
|
|
AirsharWin.geometry("720x300")
|
|
|
|
|
|
|
|
AirsharWin.resizable(True, True) # 可缩放
|
|
|
|
|
|
|
|
AirsharWin.title("空域锐化结果")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 显示图像
|
|
|
|
|
|
|
|
LabelPic = tk.Label(AirsharWin, text="IMG", width=720, height=240)
|
|
|
|
|
|
|
|
image = ImageTk.PhotoImage(Image.fromarray(combined))
|
|
|
|
|
|
|
|
LabelPic.image = image
|
|
|
|
|
|
|
|
LabelPic['image'] = image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 配置LabelPic以自适应窗口大小
|
|
|
|
|
|
|
|
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
|
|
|
|
|
|
|
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 添加保存按钮
|
|
|
|
|
|
|
|
btn_save = tk.Button(AirsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
|
|
|
|
|
|
|
command=savefile)
|
|
|
|
|
|
|
|
btn_save.pack(pady=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return
|