parent
							
								
									4cdf671aee
								
							
						
					
					
						commit
						d49f72a157
					
				@ -0,0 +1,336 @@
 | 
				
			|||||||
 | 
					import tkinter as tk
 | 
				
			||||||
 | 
					from tkinter import filedialog, messagebox
 | 
				
			||||||
 | 
					from tkinter import Toplevel
 | 
				
			||||||
 | 
					from PIL import Image, ImageTk
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import cv2
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					img_path = ""  # 全局变量,用于存储图像路径
 | 
				
			||||||
 | 
					src = None  # 全局变量,用于存储已选择的图像
 | 
				
			||||||
 | 
					img_label = None  # 全局变量,用于存储显示选择的图片的标签
 | 
				
			||||||
 | 
					edge = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					FreqsmoWin = None
 | 
				
			||||||
 | 
					AirsmoWin  = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def select_image(root):
 | 
				
			||||||
 | 
					    global img_path, src, img_label, edge
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
 | 
				
			||||||
 | 
					    if img_path:
 | 
				
			||||||
 | 
					        # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
 | 
				
			||||||
 | 
					        img_path_fixed = os.path.normpath(img_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 图像输入
 | 
				
			||||||
 | 
					        src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
 | 
				
			||||||
 | 
					        if src_temp is None:
 | 
				
			||||||
 | 
					            messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 检查 img_label 是否存在且有效
 | 
				
			||||||
 | 
					        if img_label is None or not img_label.winfo_exists():
 | 
				
			||||||
 | 
					            img_label = tk.Label(root)
 | 
				
			||||||
 | 
					            img_label.pack(side=tk.TOP, pady=10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        img = Image.open(img_path)
 | 
				
			||||||
 | 
					        img.thumbnail((160, 160))
 | 
				
			||||||
 | 
					        img_tk = ImageTk.PhotoImage(img)
 | 
				
			||||||
 | 
					        img_label.configure(image=img_tk)
 | 
				
			||||||
 | 
					        img_label.image = img_tk
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 定义 edge 变量为 PIL.Image 对象,以便稍后保存
 | 
				
			||||||
 | 
					        edge = Image.fromarray(src)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        messagebox.showerror("错误", "没有选择图片路径")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def show_selected_image(root):
 | 
				
			||||||
 | 
					    global img_label
 | 
				
			||||||
 | 
					    img_label = tk.Label(root)
 | 
				
			||||||
 | 
					    img_label.pack(side=tk.TOP, pady=10)
 | 
				
			||||||
 | 
					    img = Image.open(img_path)
 | 
				
			||||||
 | 
					    img.thumbnail((160, 160))
 | 
				
			||||||
 | 
					    img_tk = ImageTk.PhotoImage(img)
 | 
				
			||||||
 | 
					    img_label.configure(image=img_tk)
 | 
				
			||||||
 | 
					    img_label.image = img_tk
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def changeSize(event, img, LabelPic):
 | 
				
			||||||
 | 
					    img_aspect = img.shape[1] / img.shape[0]
 | 
				
			||||||
 | 
					    new_aspect = event.width / event.height
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if new_aspect > img_aspect:
 | 
				
			||||||
 | 
					        new_width = int(event.height * img_aspect)
 | 
				
			||||||
 | 
					        new_height = event.height
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        new_width = event.width
 | 
				
			||||||
 | 
					        new_height = int(event.width / img_aspect)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    resized_image = cv2.resize(img, (new_width, new_height))
 | 
				
			||||||
 | 
					    image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
 | 
				
			||||||
 | 
					    LabelPic.image = image1
 | 
				
			||||||
 | 
					    LabelPic['image'] = image1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def savefile():
 | 
				
			||||||
 | 
					    global edge
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
 | 
				
			||||||
 | 
					    if not filename:
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    # 确保 edge 变量已定义
 | 
				
			||||||
 | 
					    if edge is not None:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            edge.save(filename)
 | 
				
			||||||
 | 
					            messagebox.showinfo("保存成功", "图片保存成功!")
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            messagebox.showerror("保存失败", f"无法保存图片: {e}")
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        messagebox.showerror("保存失败", "没有图像可保存")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#频域平滑
 | 
				
			||||||
 | 
					def freq_smo(root):
 | 
				
			||||||
 | 
					    global src, FreqsmoWin, edge
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 判断是否已经选取图片
 | 
				
			||||||
 | 
					    if src is None:
 | 
				
			||||||
 | 
					        messagebox.showerror("错误", "没有选择图片!")
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 理想低通滤波器
 | 
				
			||||||
 | 
					    def Ideal_LowPassFilter(rows, cols, crow, ccol, D0=20):
 | 
				
			||||||
 | 
					        # 创建一个与输入图像大小相同的空白图像
 | 
				
			||||||
 | 
					        Ideal_LowPass = np.zeros((rows, cols), dtype=np.uint8)
 | 
				
			||||||
 | 
					        # 创建理想低通滤波器
 | 
				
			||||||
 | 
					        for i in range(rows):
 | 
				
			||||||
 | 
					            for j in range(cols):
 | 
				
			||||||
 | 
					                x = i - crow
 | 
				
			||||||
 | 
					                y = j - ccol
 | 
				
			||||||
 | 
					                D = np.sqrt(x**2 + y**2)
 | 
				
			||||||
 | 
					                if D <= D0:
 | 
				
			||||||
 | 
					                    Ideal_LowPass[i, j] = 255
 | 
				
			||||||
 | 
					        # 应用滤波器到频域表示
 | 
				
			||||||
 | 
					        mask = Ideal_LowPass[:, :, np.newaxis]
 | 
				
			||||||
 | 
					        fshift = dft_shift * mask
 | 
				
			||||||
 | 
					        # 逆傅里叶变换以获得平滑后的图像
 | 
				
			||||||
 | 
					        f_ishift = np.fft.ifftshift(fshift)
 | 
				
			||||||
 | 
					        img_back = cv2.idft(f_ishift)
 | 
				
			||||||
 | 
					        img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
 | 
				
			||||||
 | 
					        # 归一化图像到0-255
 | 
				
			||||||
 | 
					        cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
 | 
				
			||||||
 | 
					        img_back = np.uint8(img_back)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return img_back
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 布特沃斯低通滤波器
 | 
				
			||||||
 | 
					    def ButterWorth_LowPassFilter(rows, cols, crow, ccol, D0=20, n=2):
 | 
				
			||||||
 | 
					        # 创建一个与输入图像大小相同的空白图像
 | 
				
			||||||
 | 
					        ButterWorth_LowPass = np.zeros((rows, cols), dtype=np.uint8)
 | 
				
			||||||
 | 
					        # 创建巴特沃斯低通滤波器
 | 
				
			||||||
 | 
					        for i in range(rows):
 | 
				
			||||||
 | 
					            for j in range(cols):
 | 
				
			||||||
 | 
					                x = i - crow
 | 
				
			||||||
 | 
					                y = j - ccol
 | 
				
			||||||
 | 
					                D = np.sqrt(x ** 2 + y ** 2)
 | 
				
			||||||
 | 
					                ButterWorth_LowPass[i, j] = 255 / (1 + (D / D0) ** (2 * n))
 | 
				
			||||||
 | 
					        # 应用滤波器到频域表示
 | 
				
			||||||
 | 
					        mask = ButterWorth_LowPass[:, :, np.newaxis]
 | 
				
			||||||
 | 
					        fshift = dft_shift * mask
 | 
				
			||||||
 | 
					        # 逆傅里叶变换以获得平滑后的图像
 | 
				
			||||||
 | 
					        f_ishift = np.fft.ifftshift(fshift)
 | 
				
			||||||
 | 
					        img_back = cv2.idft(f_ishift)
 | 
				
			||||||
 | 
					        img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
 | 
				
			||||||
 | 
					        # 归一化图像到0-255
 | 
				
			||||||
 | 
					        cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
 | 
				
			||||||
 | 
					        img_back = np.uint8(img_back)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return img_back
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 高斯低通滤波器
 | 
				
			||||||
 | 
					    def Gauss_LowPassFilter(rows, cols, crow, ccol, D0=20):
 | 
				
			||||||
 | 
					        # 创建一个与输入图像大小相同的空白图像
 | 
				
			||||||
 | 
					        Gauss_LowPass = np.zeros((rows, cols), dtype=np.uint8)
 | 
				
			||||||
 | 
					        # 创建高斯低通滤波器
 | 
				
			||||||
 | 
					        for i in range(rows):
 | 
				
			||||||
 | 
					            for j in range(cols):
 | 
				
			||||||
 | 
					                x = i - crow
 | 
				
			||||||
 | 
					                y = j - ccol
 | 
				
			||||||
 | 
					                D = np.sqrt(x ** 2 + y ** 2)
 | 
				
			||||||
 | 
					                Gauss_LowPass[i, j] = 255 * np.exp(-0.5 * (D ** 2) / (D0 ** 2))
 | 
				
			||||||
 | 
					        # 应用滤波器到频域表示
 | 
				
			||||||
 | 
					        mask = Gauss_LowPass[:, :, np.newaxis]
 | 
				
			||||||
 | 
					        fshift = dft_shift * mask
 | 
				
			||||||
 | 
					        # 逆傅里叶变换以获得平滑后的图像
 | 
				
			||||||
 | 
					        f_ishift = np.fft.ifftshift(fshift)
 | 
				
			||||||
 | 
					        img_back = cv2.idft(f_ishift)
 | 
				
			||||||
 | 
					        img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
 | 
				
			||||||
 | 
					        # 归一化图像到0-255
 | 
				
			||||||
 | 
					        cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
 | 
				
			||||||
 | 
					        img_back = np.uint8(img_back)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return img_back
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 读取灰度图像
 | 
				
			||||||
 | 
					    im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 获取图像的频域表示
 | 
				
			||||||
 | 
					    dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT)
 | 
				
			||||||
 | 
					    dft_shift = np.fft.fftshift(dft)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 获取图像的尺寸
 | 
				
			||||||
 | 
					    rows, cols = im.shape
 | 
				
			||||||
 | 
					    crow, ccol = rows // 2, cols // 2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 理想低通滤波器
 | 
				
			||||||
 | 
					    Ideal_LowPass = Ideal_LowPassFilter(rows, cols, crow, ccol)
 | 
				
			||||||
 | 
					    # 巴特沃斯低通滤波器
 | 
				
			||||||
 | 
					    ButterWorth_LowPass = ButterWorth_LowPassFilter(rows, cols, crow, ccol)
 | 
				
			||||||
 | 
					    # 高斯低通滤波器
 | 
				
			||||||
 | 
					    Gauss_LowPass = Gauss_LowPassFilter(rows, cols, crow, ccol)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    combined = np.hstack((Ideal_LowPass, ButterWorth_LowPass, Gauss_LowPass))
 | 
				
			||||||
 | 
					    # 更新 edge 变量
 | 
				
			||||||
 | 
					    edge = Image.fromarray(combined)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 创建Toplevel窗口
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        FreqsmoWin.destroy()
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print("NVM")
 | 
				
			||||||
 | 
					    finally:
 | 
				
			||||||
 | 
					        FreqsmoWin = Toplevel()
 | 
				
			||||||
 | 
					        FreqsmoWin.attributes('-topmost', True)
 | 
				
			||||||
 | 
					    FreqsmoWin.geometry("720x300")
 | 
				
			||||||
 | 
					    FreqsmoWin.resizable(True, True)  # 可缩放
 | 
				
			||||||
 | 
					    FreqsmoWin.title("频域平滑结果")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 显示图像
 | 
				
			||||||
 | 
					    LabelPic = tk.Label(FreqsmoWin, text="IMG", width=720, height=240)
 | 
				
			||||||
 | 
					    image = ImageTk.PhotoImage(Image.fromarray(combined))
 | 
				
			||||||
 | 
					    LabelPic.image = image
 | 
				
			||||||
 | 
					    LabelPic['image'] = image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
 | 
				
			||||||
 | 
					    LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 添加保存按钮
 | 
				
			||||||
 | 
					    btn_save = tk.Button(FreqsmoWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
 | 
				
			||||||
 | 
					                         command=savefile)
 | 
				
			||||||
 | 
					    btn_save.pack(pady=10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#空域平滑
 | 
				
			||||||
 | 
					def air_smo(root):
 | 
				
			||||||
 | 
					    global src, AirsmoWin, edge
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 判断是否已经选取图片
 | 
				
			||||||
 | 
					    if src is None:
 | 
				
			||||||
 | 
					        messagebox.showerror("错误", "没有选择图片!")
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 均值平滑滤波
 | 
				
			||||||
 | 
					    def mean_filter(image, height, width):
 | 
				
			||||||
 | 
					        # 创建空白图像以存储滤波结果
 | 
				
			||||||
 | 
					        filtered_image = np.zeros((height - 2, width - 2), dtype=np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 执行3x3均值滤波
 | 
				
			||||||
 | 
					        for i in range(1, height - 1):
 | 
				
			||||||
 | 
					            for j in range(1, width - 1):
 | 
				
			||||||
 | 
					                tmp = (int(image[i - 1, j - 1]) + int(image[i - 1, j]) + int(image[i - 1, j + 1]) +
 | 
				
			||||||
 | 
					                       int(image[i, j - 1]) + int(image[i, j]) + int(image[i, j + 1]) +
 | 
				
			||||||
 | 
					                       int(image[i + 1, j - 1]) + int(image[i + 1, j]) + int(image[i + 1, j + 1])) // 9
 | 
				
			||||||
 | 
					                filtered_image[i - 1, j - 1] = tmp
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return filtered_image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 中值平滑滤波
 | 
				
			||||||
 | 
					    def median_filter(image, height, width):
 | 
				
			||||||
 | 
					        # 创建空白图像以存储滤波结果
 | 
				
			||||||
 | 
					        filtered_image = np.zeros((height - 2, width - 2), dtype=np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 执行3x3中值滤波
 | 
				
			||||||
 | 
					        for i in range(1, height - 1):
 | 
				
			||||||
 | 
					            for j in range(1, width - 1):
 | 
				
			||||||
 | 
					                # 取3x3邻域
 | 
				
			||||||
 | 
					                region = [
 | 
				
			||||||
 | 
					                    image[i - 1, j - 1], image[i - 1, j], image[i - 1, j + 1],
 | 
				
			||||||
 | 
					                    image[i, j - 1], image[i, j], image[i, j + 1],
 | 
				
			||||||
 | 
					                    image[i + 1, j - 1], image[i + 1, j], image[i + 1, j + 1]
 | 
				
			||||||
 | 
					                ]
 | 
				
			||||||
 | 
					                # 计算中值
 | 
				
			||||||
 | 
					                filtered_image[i - 1, j - 1] = np.median(region)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return filtered_image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 5x5 中值平滑滤波
 | 
				
			||||||
 | 
					    def med_filter_5x5(image, height, width):
 | 
				
			||||||
 | 
					        # 创建空白图像以存储滤波结果
 | 
				
			||||||
 | 
					        filtered_image = np.zeros((height - 4, width - 4), dtype=np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # 执行5x5中值滤波
 | 
				
			||||||
 | 
					        for i in range(2, height - 2):
 | 
				
			||||||
 | 
					            for j in range(2, width - 2):
 | 
				
			||||||
 | 
					                # 取5x5邻域的所有值
 | 
				
			||||||
 | 
					                neighbors = [
 | 
				
			||||||
 | 
					                    image[i - 2, j - 2], image[i - 2, j - 1], image[i - 2, j], image[i - 2, j + 1], image[i - 2, j + 2],
 | 
				
			||||||
 | 
					                    image[i - 1, j - 2], image[i - 1, j - 1], image[i - 1, j], image[i - 1, j + 1], image[i - 1, j + 2],
 | 
				
			||||||
 | 
					                    image[i, j - 2], image[i, j - 1], image[i, j], image[i, j + 1], image[i, j + 2],
 | 
				
			||||||
 | 
					                    image[i + 1, j - 2], image[i + 1, j - 1], image[i + 1, j], image[i + 1, j + 1], image[i + 1, j + 2],
 | 
				
			||||||
 | 
					                    image[i + 2, j - 2], image[i + 2, j - 1], image[i + 2, j], image[i + 2, j + 1], image[i + 2, j + 2]
 | 
				
			||||||
 | 
					                ]
 | 
				
			||||||
 | 
					                # 计算中值
 | 
				
			||||||
 | 
					                filtered_image[i - 2, j - 2] = np.median(neighbors)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return filtered_image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 读取灰度图像
 | 
				
			||||||
 | 
					    im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 获取图像尺寸
 | 
				
			||||||
 | 
					    height, width = im.shape
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 邻域平均
 | 
				
			||||||
 | 
					    mean = mean_filter(im, height, width)
 | 
				
			||||||
 | 
					    # 中值滤波3x3
 | 
				
			||||||
 | 
					    median = median_filter(im, height, width)
 | 
				
			||||||
 | 
					    # 中值滤波5x5
 | 
				
			||||||
 | 
					    med = med_filter_5x5(im, height, width)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    min_height = min(mean.shape[0], median.shape[0], med.shape[0])
 | 
				
			||||||
 | 
					    min_width = min(mean.shape[1], median.shape[1], med.shape[1])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    mean_cropped = mean[:min_height, :min_width]
 | 
				
			||||||
 | 
					    median_cropped = median[:min_height, :min_width]
 | 
				
			||||||
 | 
					    med_cropped = med[:min_height, :min_width]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    combined = np.hstack((mean_cropped, median_cropped, med_cropped))
 | 
				
			||||||
 | 
					    # 更新 edge 变量
 | 
				
			||||||
 | 
					    edge = Image.fromarray(combined)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 创建Toplevel窗口
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        AirsmoWin.destroy()
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print("NVM")
 | 
				
			||||||
 | 
					    finally:
 | 
				
			||||||
 | 
					        AirsmoWin = Toplevel()
 | 
				
			||||||
 | 
					        AirsmoWin.attributes('-topmost', True)
 | 
				
			||||||
 | 
					    AirsmoWin.geometry("720x300")
 | 
				
			||||||
 | 
					    AirsmoWin.resizable(True, True)  # 可缩放
 | 
				
			||||||
 | 
					    AirsmoWin.title("空域平滑结果")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 显示图像
 | 
				
			||||||
 | 
					    LabelPic = tk.Label(AirsmoWin, text="IMG", width=720, height=240)
 | 
				
			||||||
 | 
					    image = ImageTk.PhotoImage(Image.fromarray(combined))
 | 
				
			||||||
 | 
					    LabelPic.image = image
 | 
				
			||||||
 | 
					    LabelPic['image'] = image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
 | 
				
			||||||
 | 
					    LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # 添加保存按钮
 | 
				
			||||||
 | 
					    btn_save = tk.Button(AirsmoWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
 | 
				
			||||||
 | 
					                         command=savefile)
 | 
				
			||||||
 | 
					    btn_save.pack(pady=10)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return
 | 
				
			||||||
					Loading…
					
					
				
		Reference in new issue