You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
268 lines
7.0 KiB
268 lines
7.0 KiB
5 months ago
|
"""
|
||
|
Handlers for keys related to number theory: prime, even, odd, etc.
|
||
|
"""
|
||
|
|
||
|
from sympy.assumptions import Q, ask
|
||
|
from sympy.core import Add, Basic, Expr, Float, Mul, Pow, S
|
||
|
from sympy.core.numbers import (ImaginaryUnit, Infinity, Integer, NaN,
|
||
|
NegativeInfinity, NumberSymbol, Rational)
|
||
|
from sympy.functions import Abs, im, re
|
||
|
from sympy.ntheory import isprime
|
||
|
|
||
|
from sympy.multipledispatch import MDNotImplementedError
|
||
|
|
||
|
from ..predicates.ntheory import (PrimePredicate, CompositePredicate,
|
||
|
EvenPredicate, OddPredicate)
|
||
|
|
||
|
|
||
|
# PrimePredicate
|
||
|
|
||
|
def _PrimePredicate_number(expr, assumptions):
|
||
|
# helper method
|
||
|
exact = not expr.atoms(Float)
|
||
|
try:
|
||
|
i = int(expr.round())
|
||
|
if (expr - i).equals(0) is False:
|
||
|
raise TypeError
|
||
|
except TypeError:
|
||
|
return False
|
||
|
if exact:
|
||
|
return isprime(i)
|
||
|
# when not exact, we won't give a True or False
|
||
|
# since the number represents an approximate value
|
||
|
|
||
|
@PrimePredicate.register(Expr)
|
||
|
def _(expr, assumptions):
|
||
|
ret = expr.is_prime
|
||
|
if ret is None:
|
||
|
raise MDNotImplementedError
|
||
|
return ret
|
||
|
|
||
|
@PrimePredicate.register(Basic)
|
||
|
def _(expr, assumptions):
|
||
|
if expr.is_number:
|
||
|
return _PrimePredicate_number(expr, assumptions)
|
||
|
|
||
|
@PrimePredicate.register(Mul)
|
||
|
def _(expr, assumptions):
|
||
|
if expr.is_number:
|
||
|
return _PrimePredicate_number(expr, assumptions)
|
||
|
for arg in expr.args:
|
||
|
if not ask(Q.integer(arg), assumptions):
|
||
|
return None
|
||
|
for arg in expr.args:
|
||
|
if arg.is_number and arg.is_composite:
|
||
|
return False
|
||
|
|
||
|
@PrimePredicate.register(Pow)
|
||
|
def _(expr, assumptions):
|
||
|
"""
|
||
|
Integer**Integer -> !Prime
|
||
|
"""
|
||
|
if expr.is_number:
|
||
|
return _PrimePredicate_number(expr, assumptions)
|
||
|
if ask(Q.integer(expr.exp), assumptions) and \
|
||
|
ask(Q.integer(expr.base), assumptions):
|
||
|
return False
|
||
|
|
||
|
@PrimePredicate.register(Integer)
|
||
|
def _(expr, assumptions):
|
||
|
return isprime(expr)
|
||
|
|
||
|
@PrimePredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
|
||
|
def _(expr, assumptions):
|
||
|
return False
|
||
|
|
||
|
@PrimePredicate.register(Float)
|
||
|
def _(expr, assumptions):
|
||
|
return _PrimePredicate_number(expr, assumptions)
|
||
|
|
||
|
@PrimePredicate.register(NumberSymbol)
|
||
|
def _(expr, assumptions):
|
||
|
return _PrimePredicate_number(expr, assumptions)
|
||
|
|
||
|
@PrimePredicate.register(NaN)
|
||
|
def _(expr, assumptions):
|
||
|
return None
|
||
|
|
||
|
|
||
|
# CompositePredicate
|
||
|
|
||
|
@CompositePredicate.register(Expr)
|
||
|
def _(expr, assumptions):
|
||
|
ret = expr.is_composite
|
||
|
if ret is None:
|
||
|
raise MDNotImplementedError
|
||
|
return ret
|
||
|
|
||
|
@CompositePredicate.register(Basic)
|
||
|
def _(expr, assumptions):
|
||
|
_positive = ask(Q.positive(expr), assumptions)
|
||
|
if _positive:
|
||
|
_integer = ask(Q.integer(expr), assumptions)
|
||
|
if _integer:
|
||
|
_prime = ask(Q.prime(expr), assumptions)
|
||
|
if _prime is None:
|
||
|
return
|
||
|
# Positive integer which is not prime is not
|
||
|
# necessarily composite
|
||
|
if expr.equals(1):
|
||
|
return False
|
||
|
return not _prime
|
||
|
else:
|
||
|
return _integer
|
||
|
else:
|
||
|
return _positive
|
||
|
|
||
|
|
||
|
# EvenPredicate
|
||
|
|
||
|
def _EvenPredicate_number(expr, assumptions):
|
||
|
# helper method
|
||
|
try:
|
||
|
i = int(expr.round())
|
||
|
if not (expr - i).equals(0):
|
||
|
raise TypeError
|
||
|
except TypeError:
|
||
|
return False
|
||
|
if isinstance(expr, (float, Float)):
|
||
|
return False
|
||
|
return i % 2 == 0
|
||
|
|
||
|
@EvenPredicate.register(Expr)
|
||
|
def _(expr, assumptions):
|
||
|
ret = expr.is_even
|
||
|
if ret is None:
|
||
|
raise MDNotImplementedError
|
||
|
return ret
|
||
|
|
||
|
@EvenPredicate.register(Basic)
|
||
|
def _(expr, assumptions):
|
||
|
if expr.is_number:
|
||
|
return _EvenPredicate_number(expr, assumptions)
|
||
|
|
||
|
@EvenPredicate.register(Mul)
|
||
|
def _(expr, assumptions):
|
||
|
"""
|
||
|
Even * Integer -> Even
|
||
|
Even * Odd -> Even
|
||
|
Integer * Odd -> ?
|
||
|
Odd * Odd -> Odd
|
||
|
Even * Even -> Even
|
||
|
Integer * Integer -> Even if Integer + Integer = Odd
|
||
|
otherwise -> ?
|
||
|
"""
|
||
|
if expr.is_number:
|
||
|
return _EvenPredicate_number(expr, assumptions)
|
||
|
even, odd, irrational, acc = False, 0, False, 1
|
||
|
for arg in expr.args:
|
||
|
# check for all integers and at least one even
|
||
|
if ask(Q.integer(arg), assumptions):
|
||
|
if ask(Q.even(arg), assumptions):
|
||
|
even = True
|
||
|
elif ask(Q.odd(arg), assumptions):
|
||
|
odd += 1
|
||
|
elif not even and acc != 1:
|
||
|
if ask(Q.odd(acc + arg), assumptions):
|
||
|
even = True
|
||
|
elif ask(Q.irrational(arg), assumptions):
|
||
|
# one irrational makes the result False
|
||
|
# two makes it undefined
|
||
|
if irrational:
|
||
|
break
|
||
|
irrational = True
|
||
|
else:
|
||
|
break
|
||
|
acc = arg
|
||
|
else:
|
||
|
if irrational:
|
||
|
return False
|
||
|
if even:
|
||
|
return True
|
||
|
if odd == len(expr.args):
|
||
|
return False
|
||
|
|
||
|
@EvenPredicate.register(Add)
|
||
|
def _(expr, assumptions):
|
||
|
"""
|
||
|
Even + Odd -> Odd
|
||
|
Even + Even -> Even
|
||
|
Odd + Odd -> Even
|
||
|
|
||
|
"""
|
||
|
if expr.is_number:
|
||
|
return _EvenPredicate_number(expr, assumptions)
|
||
|
_result = True
|
||
|
for arg in expr.args:
|
||
|
if ask(Q.even(arg), assumptions):
|
||
|
pass
|
||
|
elif ask(Q.odd(arg), assumptions):
|
||
|
_result = not _result
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
return _result
|
||
|
|
||
|
@EvenPredicate.register(Pow)
|
||
|
def _(expr, assumptions):
|
||
|
if expr.is_number:
|
||
|
return _EvenPredicate_number(expr, assumptions)
|
||
|
if ask(Q.integer(expr.exp), assumptions):
|
||
|
if ask(Q.positive(expr.exp), assumptions):
|
||
|
return ask(Q.even(expr.base), assumptions)
|
||
|
elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
|
||
|
return False
|
||
|
elif expr.base is S.NegativeOne:
|
||
|
return False
|
||
|
|
||
|
@EvenPredicate.register(Integer)
|
||
|
def _(expr, assumptions):
|
||
|
return not bool(expr.p & 1)
|
||
|
|
||
|
@EvenPredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
|
||
|
def _(expr, assumptions):
|
||
|
return False
|
||
|
|
||
|
@EvenPredicate.register(NumberSymbol)
|
||
|
def _(expr, assumptions):
|
||
|
return _EvenPredicate_number(expr, assumptions)
|
||
|
|
||
|
@EvenPredicate.register(Abs)
|
||
|
def _(expr, assumptions):
|
||
|
if ask(Q.real(expr.args[0]), assumptions):
|
||
|
return ask(Q.even(expr.args[0]), assumptions)
|
||
|
|
||
|
@EvenPredicate.register(re)
|
||
|
def _(expr, assumptions):
|
||
|
if ask(Q.real(expr.args[0]), assumptions):
|
||
|
return ask(Q.even(expr.args[0]), assumptions)
|
||
|
|
||
|
@EvenPredicate.register(im)
|
||
|
def _(expr, assumptions):
|
||
|
if ask(Q.real(expr.args[0]), assumptions):
|
||
|
return True
|
||
|
|
||
|
@EvenPredicate.register(NaN)
|
||
|
def _(expr, assumptions):
|
||
|
return None
|
||
|
|
||
|
|
||
|
# OddPredicate
|
||
|
|
||
|
@OddPredicate.register(Expr)
|
||
|
def _(expr, assumptions):
|
||
|
ret = expr.is_odd
|
||
|
if ret is None:
|
||
|
raise MDNotImplementedError
|
||
|
return ret
|
||
|
|
||
|
@OddPredicate.register(Basic)
|
||
|
def _(expr, assumptions):
|
||
|
_integer = ask(Q.integer(expr), assumptions)
|
||
|
if _integer:
|
||
|
_even = ask(Q.even(expr), assumptions)
|
||
|
if _even is None:
|
||
|
return None
|
||
|
return not _even
|
||
|
return _integer
|