You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
3.9 KiB
129 lines
3.9 KiB
5 months ago
|
import pyglet.gl as pgl
|
||
|
from sympy.plotting.pygletplot.plot_rotation import get_spherical_rotatation
|
||
|
from sympy.plotting.pygletplot.util import get_model_matrix, model_to_screen, \
|
||
|
screen_to_model, vec_subs
|
||
|
|
||
|
|
||
|
class PlotCamera:
|
||
|
|
||
|
min_dist = 0.05
|
||
|
max_dist = 500.0
|
||
|
|
||
|
min_ortho_dist = 100.0
|
||
|
max_ortho_dist = 10000.0
|
||
|
|
||
|
_default_dist = 6.0
|
||
|
_default_ortho_dist = 600.0
|
||
|
|
||
|
rot_presets = {
|
||
|
'xy': (0, 0, 0),
|
||
|
'xz': (-90, 0, 0),
|
||
|
'yz': (0, 90, 0),
|
||
|
'perspective': (-45, 0, -45)
|
||
|
}
|
||
|
|
||
|
def __init__(self, window, ortho=False):
|
||
|
self.window = window
|
||
|
self.axes = self.window.plot.axes
|
||
|
self.ortho = ortho
|
||
|
self.reset()
|
||
|
|
||
|
def init_rot_matrix(self):
|
||
|
pgl.glPushMatrix()
|
||
|
pgl.glLoadIdentity()
|
||
|
self._rot = get_model_matrix()
|
||
|
pgl.glPopMatrix()
|
||
|
|
||
|
def set_rot_preset(self, preset_name):
|
||
|
self.init_rot_matrix()
|
||
|
try:
|
||
|
r = self.rot_presets[preset_name]
|
||
|
except AttributeError:
|
||
|
raise ValueError(
|
||
|
"%s is not a valid rotation preset." % preset_name)
|
||
|
try:
|
||
|
self.euler_rotate(r[0], 1, 0, 0)
|
||
|
self.euler_rotate(r[1], 0, 1, 0)
|
||
|
self.euler_rotate(r[2], 0, 0, 1)
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
|
||
|
def reset(self):
|
||
|
self._dist = 0.0
|
||
|
self._x, self._y = 0.0, 0.0
|
||
|
self._rot = None
|
||
|
if self.ortho:
|
||
|
self._dist = self._default_ortho_dist
|
||
|
else:
|
||
|
self._dist = self._default_dist
|
||
|
self.init_rot_matrix()
|
||
|
|
||
|
def mult_rot_matrix(self, rot):
|
||
|
pgl.glPushMatrix()
|
||
|
pgl.glLoadMatrixf(rot)
|
||
|
pgl.glMultMatrixf(self._rot)
|
||
|
self._rot = get_model_matrix()
|
||
|
pgl.glPopMatrix()
|
||
|
|
||
|
def setup_projection(self):
|
||
|
pgl.glMatrixMode(pgl.GL_PROJECTION)
|
||
|
pgl.glLoadIdentity()
|
||
|
if self.ortho:
|
||
|
# yep, this is pseudo ortho (don't tell anyone)
|
||
|
pgl.gluPerspective(
|
||
|
0.3, float(self.window.width)/float(self.window.height),
|
||
|
self.min_ortho_dist - 0.01, self.max_ortho_dist + 0.01)
|
||
|
else:
|
||
|
pgl.gluPerspective(
|
||
|
30.0, float(self.window.width)/float(self.window.height),
|
||
|
self.min_dist - 0.01, self.max_dist + 0.01)
|
||
|
pgl.glMatrixMode(pgl.GL_MODELVIEW)
|
||
|
|
||
|
def _get_scale(self):
|
||
|
return 1.0, 1.0, 1.0
|
||
|
|
||
|
def apply_transformation(self):
|
||
|
pgl.glLoadIdentity()
|
||
|
pgl.glTranslatef(self._x, self._y, -self._dist)
|
||
|
if self._rot is not None:
|
||
|
pgl.glMultMatrixf(self._rot)
|
||
|
pgl.glScalef(*self._get_scale())
|
||
|
|
||
|
def spherical_rotate(self, p1, p2, sensitivity=1.0):
|
||
|
mat = get_spherical_rotatation(p1, p2, self.window.width,
|
||
|
self.window.height, sensitivity)
|
||
|
if mat is not None:
|
||
|
self.mult_rot_matrix(mat)
|
||
|
|
||
|
def euler_rotate(self, angle, x, y, z):
|
||
|
pgl.glPushMatrix()
|
||
|
pgl.glLoadMatrixf(self._rot)
|
||
|
pgl.glRotatef(angle, x, y, z)
|
||
|
self._rot = get_model_matrix()
|
||
|
pgl.glPopMatrix()
|
||
|
|
||
|
def zoom_relative(self, clicks, sensitivity):
|
||
|
|
||
|
if self.ortho:
|
||
|
dist_d = clicks * sensitivity * 50.0
|
||
|
min_dist = self.min_ortho_dist
|
||
|
max_dist = self.max_ortho_dist
|
||
|
else:
|
||
|
dist_d = clicks * sensitivity
|
||
|
min_dist = self.min_dist
|
||
|
max_dist = self.max_dist
|
||
|
|
||
|
new_dist = (self._dist - dist_d)
|
||
|
if (clicks < 0 and new_dist < max_dist) or new_dist > min_dist:
|
||
|
self._dist = new_dist
|
||
|
|
||
|
def mouse_translate(self, x, y, dx, dy):
|
||
|
pgl.glPushMatrix()
|
||
|
pgl.glLoadIdentity()
|
||
|
pgl.glTranslatef(0, 0, -self._dist)
|
||
|
z = model_to_screen(0, 0, 0)[2]
|
||
|
d = vec_subs(screen_to_model(x, y, z), screen_to_model(x - dx, y - dy, z))
|
||
|
pgl.glPopMatrix()
|
||
|
self._x += d[0]
|
||
|
self._y += d[1]
|