You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
397 lines
11 KiB
397 lines
11 KiB
5 months ago
|
from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio,
|
||
|
EulerGamma, Catalan, Lambda, Dummy, S, Eq, Ne, Le,
|
||
|
Lt, Gt, Ge, Mod)
|
||
|
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
|
||
|
sinh, cosh, tanh, asin, acos, acosh, Max, Min)
|
||
|
from sympy.testing.pytest import raises
|
||
|
from sympy.printing.jscode import JavascriptCodePrinter
|
||
|
from sympy.utilities.lambdify import implemented_function
|
||
|
from sympy.tensor import IndexedBase, Idx
|
||
|
from sympy.matrices import Matrix, MatrixSymbol
|
||
|
|
||
|
from sympy.printing.jscode import jscode
|
||
|
|
||
|
x, y, z = symbols('x,y,z')
|
||
|
|
||
|
|
||
|
def test_printmethod():
|
||
|
assert jscode(Abs(x)) == "Math.abs(x)"
|
||
|
|
||
|
|
||
|
def test_jscode_sqrt():
|
||
|
assert jscode(sqrt(x)) == "Math.sqrt(x)"
|
||
|
assert jscode(x**0.5) == "Math.sqrt(x)"
|
||
|
assert jscode(x**(S.One/3)) == "Math.cbrt(x)"
|
||
|
|
||
|
|
||
|
def test_jscode_Pow():
|
||
|
g = implemented_function('g', Lambda(x, 2*x))
|
||
|
assert jscode(x**3) == "Math.pow(x, 3)"
|
||
|
assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))"
|
||
|
assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
|
||
|
"Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)"
|
||
|
assert jscode(x**-1.0) == '1/x'
|
||
|
|
||
|
|
||
|
def test_jscode_constants_mathh():
|
||
|
assert jscode(exp(1)) == "Math.E"
|
||
|
assert jscode(pi) == "Math.PI"
|
||
|
assert jscode(oo) == "Number.POSITIVE_INFINITY"
|
||
|
assert jscode(-oo) == "Number.NEGATIVE_INFINITY"
|
||
|
|
||
|
|
||
|
def test_jscode_constants_other():
|
||
|
assert jscode(
|
||
|
2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
|
||
|
assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
|
||
|
assert jscode(
|
||
|
2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
|
||
|
|
||
|
|
||
|
def test_jscode_Rational():
|
||
|
assert jscode(Rational(3, 7)) == "3/7"
|
||
|
assert jscode(Rational(18, 9)) == "2"
|
||
|
assert jscode(Rational(3, -7)) == "-3/7"
|
||
|
assert jscode(Rational(-3, -7)) == "3/7"
|
||
|
|
||
|
|
||
|
def test_Relational():
|
||
|
assert jscode(Eq(x, y)) == "x == y"
|
||
|
assert jscode(Ne(x, y)) == "x != y"
|
||
|
assert jscode(Le(x, y)) == "x <= y"
|
||
|
assert jscode(Lt(x, y)) == "x < y"
|
||
|
assert jscode(Gt(x, y)) == "x > y"
|
||
|
assert jscode(Ge(x, y)) == "x >= y"
|
||
|
|
||
|
|
||
|
def test_Mod():
|
||
|
assert jscode(Mod(x, y)) == '((x % y) + y) % y'
|
||
|
assert jscode(Mod(x, x + y)) == '((x % (x + y)) + (x + y)) % (x + y)'
|
||
|
p1, p2 = symbols('p1 p2', positive=True)
|
||
|
assert jscode(Mod(p1, p2)) == 'p1 % p2'
|
||
|
assert jscode(Mod(p1, p2 + 3)) == 'p1 % (p2 + 3)'
|
||
|
assert jscode(Mod(-3, -7, evaluate=False)) == '(-3) % (-7)'
|
||
|
assert jscode(-Mod(p1, p2)) == '-(p1 % p2)'
|
||
|
assert jscode(x*Mod(p1, p2)) == 'x*(p1 % p2)'
|
||
|
|
||
|
|
||
|
def test_jscode_Integer():
|
||
|
assert jscode(Integer(67)) == "67"
|
||
|
assert jscode(Integer(-1)) == "-1"
|
||
|
|
||
|
|
||
|
def test_jscode_functions():
|
||
|
assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))"
|
||
|
assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)"
|
||
|
assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)"
|
||
|
assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)"
|
||
|
assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
|
||
|
|
||
|
|
||
|
def test_jscode_inline_function():
|
||
|
x = symbols('x')
|
||
|
g = implemented_function('g', Lambda(x, 2*x))
|
||
|
assert jscode(g(x)) == "2*x"
|
||
|
g = implemented_function('g', Lambda(x, 2*x/Catalan))
|
||
|
assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
|
||
|
A = IndexedBase('A')
|
||
|
i = Idx('i', symbols('n', integer=True))
|
||
|
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
|
||
|
assert jscode(g(A[i]), assign_to=A[i]) == (
|
||
|
"for (var i=0; i<n; i++){\n"
|
||
|
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
|
||
|
"}"
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_jscode_exceptions():
|
||
|
assert jscode(ceiling(x)) == "Math.ceil(x)"
|
||
|
assert jscode(Abs(x)) == "Math.abs(x)"
|
||
|
|
||
|
|
||
|
def test_jscode_boolean():
|
||
|
assert jscode(x & y) == "x && y"
|
||
|
assert jscode(x | y) == "x || y"
|
||
|
assert jscode(~x) == "!x"
|
||
|
assert jscode(x & y & z) == "x && y && z"
|
||
|
assert jscode(x | y | z) == "x || y || z"
|
||
|
assert jscode((x & y) | z) == "z || x && y"
|
||
|
assert jscode((x | y) & z) == "z && (x || y)"
|
||
|
|
||
|
|
||
|
def test_jscode_Piecewise():
|
||
|
expr = Piecewise((x, x < 1), (x**2, True))
|
||
|
p = jscode(expr)
|
||
|
s = \
|
||
|
"""\
|
||
|
((x < 1) ? (
|
||
|
x
|
||
|
)
|
||
|
: (
|
||
|
Math.pow(x, 2)
|
||
|
))\
|
||
|
"""
|
||
|
assert p == s
|
||
|
assert jscode(expr, assign_to="c") == (
|
||
|
"if (x < 1) {\n"
|
||
|
" c = x;\n"
|
||
|
"}\n"
|
||
|
"else {\n"
|
||
|
" c = Math.pow(x, 2);\n"
|
||
|
"}")
|
||
|
# Check that Piecewise without a True (default) condition error
|
||
|
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
|
||
|
raises(ValueError, lambda: jscode(expr))
|
||
|
|
||
|
|
||
|
def test_jscode_Piecewise_deep():
|
||
|
p = jscode(2*Piecewise((x, x < 1), (x**2, True)))
|
||
|
s = \
|
||
|
"""\
|
||
|
2*((x < 1) ? (
|
||
|
x
|
||
|
)
|
||
|
: (
|
||
|
Math.pow(x, 2)
|
||
|
))\
|
||
|
"""
|
||
|
assert p == s
|
||
|
|
||
|
|
||
|
def test_jscode_settings():
|
||
|
raises(TypeError, lambda: jscode(sin(x), method="garbage"))
|
||
|
|
||
|
|
||
|
def test_jscode_Indexed():
|
||
|
n, m, o = symbols('n m o', integer=True)
|
||
|
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
|
||
|
p = JavascriptCodePrinter()
|
||
|
p._not_c = set()
|
||
|
|
||
|
x = IndexedBase('x')[j]
|
||
|
assert p._print_Indexed(x) == 'x[j]'
|
||
|
A = IndexedBase('A')[i, j]
|
||
|
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
|
||
|
B = IndexedBase('B')[i, j, k]
|
||
|
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
|
||
|
|
||
|
assert p._not_c == set()
|
||
|
|
||
|
|
||
|
def test_jscode_loops_matrix_vector():
|
||
|
n, m = symbols('n m', integer=True)
|
||
|
A = IndexedBase('A')
|
||
|
x = IndexedBase('x')
|
||
|
y = IndexedBase('y')
|
||
|
i = Idx('i', m)
|
||
|
j = Idx('j', n)
|
||
|
|
||
|
s = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' y[i] = 0;\n'
|
||
|
'}\n'
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var j=0; j<n; j++){\n'
|
||
|
' y[i] = A[n*i + j]*x[j] + y[i];\n'
|
||
|
' }\n'
|
||
|
'}'
|
||
|
)
|
||
|
c = jscode(A[i, j]*x[j], assign_to=y[i])
|
||
|
assert c == s
|
||
|
|
||
|
|
||
|
def test_dummy_loops():
|
||
|
i, m = symbols('i m', integer=True, cls=Dummy)
|
||
|
x = IndexedBase('x')
|
||
|
y = IndexedBase('y')
|
||
|
i = Idx(i, m)
|
||
|
|
||
|
expected = (
|
||
|
'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
|
||
|
' y[i_%(icount)i] = x[i_%(icount)i];\n'
|
||
|
'}'
|
||
|
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
|
||
|
code = jscode(x[i], assign_to=y[i])
|
||
|
assert code == expected
|
||
|
|
||
|
|
||
|
def test_jscode_loops_add():
|
||
|
n, m = symbols('n m', integer=True)
|
||
|
A = IndexedBase('A')
|
||
|
x = IndexedBase('x')
|
||
|
y = IndexedBase('y')
|
||
|
z = IndexedBase('z')
|
||
|
i = Idx('i', m)
|
||
|
j = Idx('j', n)
|
||
|
|
||
|
s = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' y[i] = x[i] + z[i];\n'
|
||
|
'}\n'
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var j=0; j<n; j++){\n'
|
||
|
' y[i] = A[n*i + j]*x[j] + y[i];\n'
|
||
|
' }\n'
|
||
|
'}'
|
||
|
)
|
||
|
c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
|
||
|
assert c == s
|
||
|
|
||
|
|
||
|
def test_jscode_loops_multiple_contractions():
|
||
|
n, m, o, p = symbols('n m o p', integer=True)
|
||
|
a = IndexedBase('a')
|
||
|
b = IndexedBase('b')
|
||
|
y = IndexedBase('y')
|
||
|
i = Idx('i', m)
|
||
|
j = Idx('j', n)
|
||
|
k = Idx('k', o)
|
||
|
l = Idx('l', p)
|
||
|
|
||
|
s = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' y[i] = 0;\n'
|
||
|
'}\n'
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var j=0; j<n; j++){\n'
|
||
|
' for (var k=0; k<o; k++){\n'
|
||
|
' for (var l=0; l<p; l++){\n'
|
||
|
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
||
|
' }\n'
|
||
|
' }\n'
|
||
|
' }\n'
|
||
|
'}'
|
||
|
)
|
||
|
c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
|
||
|
assert c == s
|
||
|
|
||
|
|
||
|
def test_jscode_loops_addfactor():
|
||
|
n, m, o, p = symbols('n m o p', integer=True)
|
||
|
a = IndexedBase('a')
|
||
|
b = IndexedBase('b')
|
||
|
c = IndexedBase('c')
|
||
|
y = IndexedBase('y')
|
||
|
i = Idx('i', m)
|
||
|
j = Idx('j', n)
|
||
|
k = Idx('k', o)
|
||
|
l = Idx('l', p)
|
||
|
|
||
|
s = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' y[i] = 0;\n'
|
||
|
'}\n'
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var j=0; j<n; j++){\n'
|
||
|
' for (var k=0; k<o; k++){\n'
|
||
|
' for (var l=0; l<p; l++){\n'
|
||
|
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
|
||
|
' }\n'
|
||
|
' }\n'
|
||
|
' }\n'
|
||
|
'}'
|
||
|
)
|
||
|
c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
|
||
|
assert c == s
|
||
|
|
||
|
|
||
|
def test_jscode_loops_multiple_terms():
|
||
|
n, m, o, p = symbols('n m o p', integer=True)
|
||
|
a = IndexedBase('a')
|
||
|
b = IndexedBase('b')
|
||
|
c = IndexedBase('c')
|
||
|
y = IndexedBase('y')
|
||
|
i = Idx('i', m)
|
||
|
j = Idx('j', n)
|
||
|
k = Idx('k', o)
|
||
|
|
||
|
s0 = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' y[i] = 0;\n'
|
||
|
'}\n'
|
||
|
)
|
||
|
s1 = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var j=0; j<n; j++){\n'
|
||
|
' for (var k=0; k<o; k++){\n'
|
||
|
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
|
||
|
' }\n'
|
||
|
' }\n'
|
||
|
'}\n'
|
||
|
)
|
||
|
s2 = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var k=0; k<o; k++){\n'
|
||
|
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
|
||
|
' }\n'
|
||
|
'}\n'
|
||
|
)
|
||
|
s3 = (
|
||
|
'for (var i=0; i<m; i++){\n'
|
||
|
' for (var j=0; j<n; j++){\n'
|
||
|
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
|
||
|
' }\n'
|
||
|
'}\n'
|
||
|
)
|
||
|
c = jscode(
|
||
|
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
|
||
|
assert (c == s0 + s1 + s2 + s3[:-1] or
|
||
|
c == s0 + s1 + s3 + s2[:-1] or
|
||
|
c == s0 + s2 + s1 + s3[:-1] or
|
||
|
c == s0 + s2 + s3 + s1[:-1] or
|
||
|
c == s0 + s3 + s1 + s2[:-1] or
|
||
|
c == s0 + s3 + s2 + s1[:-1])
|
||
|
|
||
|
|
||
|
def test_Matrix_printing():
|
||
|
# Test returning a Matrix
|
||
|
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
|
||
|
A = MatrixSymbol('A', 3, 1)
|
||
|
assert jscode(mat, A) == (
|
||
|
"A[0] = x*y;\n"
|
||
|
"if (y > 0) {\n"
|
||
|
" A[1] = x + 2;\n"
|
||
|
"}\n"
|
||
|
"else {\n"
|
||
|
" A[1] = y;\n"
|
||
|
"}\n"
|
||
|
"A[2] = Math.sin(z);")
|
||
|
# Test using MatrixElements in expressions
|
||
|
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
|
||
|
assert jscode(expr) == (
|
||
|
"((x > 0) ? (\n"
|
||
|
" 2*A[2]\n"
|
||
|
")\n"
|
||
|
": (\n"
|
||
|
" A[2]\n"
|
||
|
")) + Math.sin(A[1]) + A[0]")
|
||
|
# Test using MatrixElements in a Matrix
|
||
|
q = MatrixSymbol('q', 5, 1)
|
||
|
M = MatrixSymbol('M', 3, 3)
|
||
|
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
|
||
|
[q[1,0] + q[2,0], q[3, 0], 5],
|
||
|
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
|
||
|
assert jscode(m, M) == (
|
||
|
"M[0] = Math.sin(q[1]);\n"
|
||
|
"M[1] = 0;\n"
|
||
|
"M[2] = Math.cos(q[2]);\n"
|
||
|
"M[3] = q[1] + q[2];\n"
|
||
|
"M[4] = q[3];\n"
|
||
|
"M[5] = 5;\n"
|
||
|
"M[6] = 2*q[4]/q[1];\n"
|
||
|
"M[7] = Math.sqrt(q[0]) + 4;\n"
|
||
|
"M[8] = 0;")
|
||
|
|
||
|
|
||
|
def test_MatrixElement_printing():
|
||
|
# test cases for issue #11821
|
||
|
A = MatrixSymbol("A", 1, 3)
|
||
|
B = MatrixSymbol("B", 1, 3)
|
||
|
C = MatrixSymbol("C", 1, 3)
|
||
|
|
||
|
assert(jscode(A[0, 0]) == "A[0]")
|
||
|
assert(jscode(3 * A[0, 0]) == "3*A[0]")
|
||
|
|
||
|
F = C[0, 0].subs(C, A - B)
|
||
|
assert(jscode(F) == "(A - B)[0]")
|