You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

397 lines
11 KiB

from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio,
EulerGamma, Catalan, Lambda, Dummy, S, Eq, Ne, Le,
Lt, Gt, Ge, Mod)
from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt,
sinh, cosh, tanh, asin, acos, acosh, Max, Min)
from sympy.testing.pytest import raises
from sympy.printing.jscode import JavascriptCodePrinter
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol
from sympy.printing.jscode import jscode
x, y, z = symbols('x,y,z')
def test_printmethod():
assert jscode(Abs(x)) == "Math.abs(x)"
def test_jscode_sqrt():
assert jscode(sqrt(x)) == "Math.sqrt(x)"
assert jscode(x**0.5) == "Math.sqrt(x)"
assert jscode(x**(S.One/3)) == "Math.cbrt(x)"
def test_jscode_Pow():
g = implemented_function('g', Lambda(x, 2*x))
assert jscode(x**3) == "Math.pow(x, 3)"
assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))"
assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)"
assert jscode(x**-1.0) == '1/x'
def test_jscode_constants_mathh():
assert jscode(exp(1)) == "Math.E"
assert jscode(pi) == "Math.PI"
assert jscode(oo) == "Number.POSITIVE_INFINITY"
assert jscode(-oo) == "Number.NEGATIVE_INFINITY"
def test_jscode_constants_other():
assert jscode(
2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
assert jscode(
2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_jscode_Rational():
assert jscode(Rational(3, 7)) == "3/7"
assert jscode(Rational(18, 9)) == "2"
assert jscode(Rational(3, -7)) == "-3/7"
assert jscode(Rational(-3, -7)) == "3/7"
def test_Relational():
assert jscode(Eq(x, y)) == "x == y"
assert jscode(Ne(x, y)) == "x != y"
assert jscode(Le(x, y)) == "x <= y"
assert jscode(Lt(x, y)) == "x < y"
assert jscode(Gt(x, y)) == "x > y"
assert jscode(Ge(x, y)) == "x >= y"
def test_Mod():
assert jscode(Mod(x, y)) == '((x % y) + y) % y'
assert jscode(Mod(x, x + y)) == '((x % (x + y)) + (x + y)) % (x + y)'
p1, p2 = symbols('p1 p2', positive=True)
assert jscode(Mod(p1, p2)) == 'p1 % p2'
assert jscode(Mod(p1, p2 + 3)) == 'p1 % (p2 + 3)'
assert jscode(Mod(-3, -7, evaluate=False)) == '(-3) % (-7)'
assert jscode(-Mod(p1, p2)) == '-(p1 % p2)'
assert jscode(x*Mod(p1, p2)) == 'x*(p1 % p2)'
def test_jscode_Integer():
assert jscode(Integer(67)) == "67"
assert jscode(Integer(-1)) == "-1"
def test_jscode_functions():
assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))"
assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)"
assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)"
assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)"
assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)"
def test_jscode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert jscode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert jscode(g(A[i]), assign_to=A[i]) == (
"for (var i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_jscode_exceptions():
assert jscode(ceiling(x)) == "Math.ceil(x)"
assert jscode(Abs(x)) == "Math.abs(x)"
def test_jscode_boolean():
assert jscode(x & y) == "x && y"
assert jscode(x | y) == "x || y"
assert jscode(~x) == "!x"
assert jscode(x & y & z) == "x && y && z"
assert jscode(x | y | z) == "x || y || z"
assert jscode((x & y) | z) == "z || x && y"
assert jscode((x | y) & z) == "z && (x || y)"
def test_jscode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
p = jscode(expr)
s = \
"""\
((x < 1) ? (
x
)
: (
Math.pow(x, 2)
))\
"""
assert p == s
assert jscode(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = Math.pow(x, 2);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: jscode(expr))
def test_jscode_Piecewise_deep():
p = jscode(2*Piecewise((x, x < 1), (x**2, True)))
s = \
"""\
2*((x < 1) ? (
x
)
: (
Math.pow(x, 2)
))\
"""
assert p == s
def test_jscode_settings():
raises(TypeError, lambda: jscode(sin(x), method="garbage"))
def test_jscode_Indexed():
n, m, o = symbols('n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
p = JavascriptCodePrinter()
p._not_c = set()
x = IndexedBase('x')[j]
assert p._print_Indexed(x) == 'x[j]'
A = IndexedBase('A')[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
B = IndexedBase('B')[i, j, k]
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
assert p._not_c == set()
def test_jscode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = jscode(A[i, j]*x[j], assign_to=y[i])
assert c == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = jscode(x[i], assign_to=y[i])
assert code == expected
def test_jscode_loops_add():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = A[n*i + j]*x[j] + y[i];\n'
' }\n'
'}'
)
c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i])
assert c == s
def test_jscode_loops_multiple_contractions():
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' for (var l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i])
assert c == s
def test_jscode_loops_addfactor():
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' for (var l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i])
assert c == s
def test_jscode_loops_multiple_terms():
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (var i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' for (var k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (var i=0; i<m; i++){\n'
' for (var k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (var i=0; i<m; i++){\n'
' for (var j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = jscode(
b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert jscode(mat, A) == (
"A[0] = x*y;\n"
"if (y > 0) {\n"
" A[1] = x + 2;\n"
"}\n"
"else {\n"
" A[1] = y;\n"
"}\n"
"A[2] = Math.sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert jscode(expr) == (
"((x > 0) ? (\n"
" 2*A[2]\n"
")\n"
": (\n"
" A[2]\n"
")) + Math.sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert jscode(m, M) == (
"M[0] = Math.sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = Math.cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = Math.sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(jscode(A[0, 0]) == "A[0]")
assert(jscode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(jscode(F) == "(A - B)[0]")