You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
349 lines
8.5 KiB
349 lines
8.5 KiB
"""
|
|
|
|
Module for the ddm_* routines for operating on a matrix in list of lists
|
|
matrix representation.
|
|
|
|
These routines are used internally by the DDM class which also provides a
|
|
friendlier interface for them. The idea here is to implement core matrix
|
|
routines in a way that can be applied to any simple list representation
|
|
without the need to use any particular matrix class. For example we can
|
|
compute the RREF of a matrix like:
|
|
|
|
>>> from sympy.polys.matrices.dense import ddm_irref
|
|
>>> M = [[1, 2, 3], [4, 5, 6]]
|
|
>>> pivots = ddm_irref(M)
|
|
>>> M
|
|
[[1.0, 0.0, -1.0], [0, 1.0, 2.0]]
|
|
|
|
These are lower-level routines that work mostly in place.The routines at this
|
|
level should not need to know what the domain of the elements is but should
|
|
ideally document what operations they will use and what functions they need to
|
|
be provided with.
|
|
|
|
The next-level up is the DDM class which uses these routines but wraps them up
|
|
with an interface that handles copying etc and keeps track of the Domain of
|
|
the elements of the matrix:
|
|
|
|
>>> from sympy.polys.domains import QQ
|
|
>>> from sympy.polys.matrices.ddm import DDM
|
|
>>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
|
|
>>> M
|
|
[[1, 2, 3], [4, 5, 6]]
|
|
>>> Mrref, pivots = M.rref()
|
|
>>> Mrref
|
|
[[1, 0, -1], [0, 1, 2]]
|
|
|
|
"""
|
|
from __future__ import annotations
|
|
from operator import mul
|
|
from .exceptions import (
|
|
DMShapeError,
|
|
DMNonInvertibleMatrixError,
|
|
DMNonSquareMatrixError,
|
|
)
|
|
from typing import Sequence, TypeVar
|
|
from sympy.polys.matrices._typing import RingElement
|
|
|
|
|
|
T = TypeVar('T')
|
|
R = TypeVar('R', bound=RingElement)
|
|
|
|
|
|
def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]:
|
|
"""matrix transpose"""
|
|
return list(map(list, zip(*matrix)))
|
|
|
|
|
|
def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
|
|
"""a += b"""
|
|
for ai, bi in zip(a, b):
|
|
for j, bij in enumerate(bi):
|
|
ai[j] += bij
|
|
|
|
|
|
def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
|
|
"""a -= b"""
|
|
for ai, bi in zip(a, b):
|
|
for j, bij in enumerate(bi):
|
|
ai[j] -= bij
|
|
|
|
|
|
def ddm_ineg(a: list[list[R]]) -> None:
|
|
"""a <-- -a"""
|
|
for ai in a:
|
|
for j, aij in enumerate(ai):
|
|
ai[j] = -aij
|
|
|
|
|
|
def ddm_imul(a: list[list[R]], b: R) -> None:
|
|
for ai in a:
|
|
for j, aij in enumerate(ai):
|
|
ai[j] = aij * b
|
|
|
|
|
|
def ddm_irmul(a: list[list[R]], b: R) -> None:
|
|
for ai in a:
|
|
for j, aij in enumerate(ai):
|
|
ai[j] = b * aij
|
|
|
|
|
|
def ddm_imatmul(
|
|
a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]]
|
|
) -> None:
|
|
"""a += b @ c"""
|
|
cT = list(zip(*c))
|
|
|
|
for bi, ai in zip(b, a):
|
|
for j, cTj in enumerate(cT):
|
|
ai[j] = sum(map(mul, bi, cTj), ai[j])
|
|
|
|
|
|
def ddm_irref(a, _partial_pivot=False):
|
|
"""a <-- rref(a)"""
|
|
# a is (m x n)
|
|
m = len(a)
|
|
if not m:
|
|
return []
|
|
n = len(a[0])
|
|
|
|
i = 0
|
|
pivots = []
|
|
|
|
for j in range(n):
|
|
# Proper pivoting should be used for all domains for performance
|
|
# reasons but it is only strictly needed for RR and CC (and possibly
|
|
# other domains like RR(x)). This path is used by DDM.rref() if the
|
|
# domain is RR or CC. It uses partial (row) pivoting based on the
|
|
# absolute value of the pivot candidates.
|
|
if _partial_pivot:
|
|
ip = max(range(i, m), key=lambda ip: abs(a[ip][j]))
|
|
a[i], a[ip] = a[ip], a[i]
|
|
|
|
# pivot
|
|
aij = a[i][j]
|
|
|
|
# zero-pivot
|
|
if not aij:
|
|
for ip in range(i+1, m):
|
|
aij = a[ip][j]
|
|
# row-swap
|
|
if aij:
|
|
a[i], a[ip] = a[ip], a[i]
|
|
break
|
|
else:
|
|
# next column
|
|
continue
|
|
|
|
# normalise row
|
|
ai = a[i]
|
|
aijinv = aij**-1
|
|
for l in range(j, n):
|
|
ai[l] *= aijinv # ai[j] = one
|
|
|
|
# eliminate above and below to the right
|
|
for k, ak in enumerate(a):
|
|
if k == i or not ak[j]:
|
|
continue
|
|
akj = ak[j]
|
|
ak[j] -= akj # ak[j] = zero
|
|
for l in range(j+1, n):
|
|
ak[l] -= akj * ai[l]
|
|
|
|
# next row
|
|
pivots.append(j)
|
|
i += 1
|
|
|
|
# no more rows?
|
|
if i >= m:
|
|
break
|
|
|
|
return pivots
|
|
|
|
|
|
def ddm_idet(a, K):
|
|
"""a <-- echelon(a); return det"""
|
|
# Bareiss algorithm
|
|
# https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
|
|
|
|
# a is (m x n)
|
|
m = len(a)
|
|
if not m:
|
|
return K.one
|
|
n = len(a[0])
|
|
|
|
exquo = K.exquo
|
|
# uf keeps track of the sign change from row swaps
|
|
uf = K.one
|
|
|
|
for k in range(n-1):
|
|
if not a[k][k]:
|
|
for i in range(k+1, n):
|
|
if a[i][k]:
|
|
a[k], a[i] = a[i], a[k]
|
|
uf = -uf
|
|
break
|
|
else:
|
|
return K.zero
|
|
|
|
akkm1 = a[k-1][k-1] if k else K.one
|
|
|
|
for i in range(k+1, n):
|
|
for j in range(k+1, n):
|
|
a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1)
|
|
|
|
return uf * a[-1][-1]
|
|
|
|
|
|
def ddm_iinv(ainv, a, K):
|
|
if not K.is_Field:
|
|
raise ValueError('Not a field')
|
|
|
|
# a is (m x n)
|
|
m = len(a)
|
|
if not m:
|
|
return
|
|
n = len(a[0])
|
|
if m != n:
|
|
raise DMNonSquareMatrixError
|
|
|
|
eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)]
|
|
Aaug = [row + eyerow for row, eyerow in zip(a, eye)]
|
|
pivots = ddm_irref(Aaug)
|
|
if pivots != list(range(n)):
|
|
raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.')
|
|
ainv[:] = [row[n:] for row in Aaug]
|
|
|
|
|
|
def ddm_ilu_split(L, U, K):
|
|
"""L, U <-- LU(U)"""
|
|
m = len(U)
|
|
if not m:
|
|
return []
|
|
n = len(U[0])
|
|
|
|
swaps = ddm_ilu(U)
|
|
|
|
zeros = [K.zero] * min(m, n)
|
|
for i in range(1, m):
|
|
j = min(i, n)
|
|
L[i][:j] = U[i][:j]
|
|
U[i][:j] = zeros[:j]
|
|
|
|
return swaps
|
|
|
|
|
|
def ddm_ilu(a):
|
|
"""a <-- LU(a)"""
|
|
m = len(a)
|
|
if not m:
|
|
return []
|
|
n = len(a[0])
|
|
|
|
swaps = []
|
|
|
|
for i in range(min(m, n)):
|
|
if not a[i][i]:
|
|
for ip in range(i+1, m):
|
|
if a[ip][i]:
|
|
swaps.append((i, ip))
|
|
a[i], a[ip] = a[ip], a[i]
|
|
break
|
|
else:
|
|
# M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]])
|
|
continue
|
|
for j in range(i+1, m):
|
|
l_ji = a[j][i] / a[i][i]
|
|
a[j][i] = l_ji
|
|
for k in range(i+1, n):
|
|
a[j][k] -= l_ji * a[i][k]
|
|
|
|
return swaps
|
|
|
|
|
|
def ddm_ilu_solve(x, L, U, swaps, b):
|
|
"""x <-- solve(L*U*x = swaps(b))"""
|
|
m = len(U)
|
|
if not m:
|
|
return
|
|
n = len(U[0])
|
|
|
|
m2 = len(b)
|
|
if not m2:
|
|
raise DMShapeError("Shape mismtch")
|
|
o = len(b[0])
|
|
|
|
if m != m2:
|
|
raise DMShapeError("Shape mismtch")
|
|
if m < n:
|
|
raise NotImplementedError("Underdetermined")
|
|
|
|
if swaps:
|
|
b = [row[:] for row in b]
|
|
for i1, i2 in swaps:
|
|
b[i1], b[i2] = b[i2], b[i1]
|
|
|
|
# solve Ly = b
|
|
y = [[None] * o for _ in range(m)]
|
|
for k in range(o):
|
|
for i in range(m):
|
|
rhs = b[i][k]
|
|
for j in range(i):
|
|
rhs -= L[i][j] * y[j][k]
|
|
y[i][k] = rhs
|
|
|
|
if m > n:
|
|
for i in range(n, m):
|
|
for j in range(o):
|
|
if y[i][j]:
|
|
raise DMNonInvertibleMatrixError
|
|
|
|
# Solve Ux = y
|
|
for k in range(o):
|
|
for i in reversed(range(n)):
|
|
if not U[i][i]:
|
|
raise DMNonInvertibleMatrixError
|
|
rhs = y[i][k]
|
|
for j in range(i+1, n):
|
|
rhs -= U[i][j] * x[j][k]
|
|
x[i][k] = rhs / U[i][i]
|
|
|
|
|
|
def ddm_berk(M, K):
|
|
m = len(M)
|
|
if not m:
|
|
return [[K.one]]
|
|
n = len(M[0])
|
|
|
|
if m != n:
|
|
raise DMShapeError("Not square")
|
|
|
|
if n == 1:
|
|
return [[K.one], [-M[0][0]]]
|
|
|
|
a = M[0][0]
|
|
R = [M[0][1:]]
|
|
C = [[row[0]] for row in M[1:]]
|
|
A = [row[1:] for row in M[1:]]
|
|
|
|
q = ddm_berk(A, K)
|
|
|
|
T = [[K.zero] * n for _ in range(n+1)]
|
|
for i in range(n):
|
|
T[i][i] = K.one
|
|
T[i+1][i] = -a
|
|
for i in range(2, n+1):
|
|
if i == 2:
|
|
AnC = C
|
|
else:
|
|
C = AnC
|
|
AnC = [[K.zero] for row in C]
|
|
ddm_imatmul(AnC, A, C)
|
|
RAnC = [[K.zero]]
|
|
ddm_imatmul(RAnC, R, AnC)
|
|
for j in range(0, n+1-i):
|
|
T[i+j][j] = -RAnC[0][0]
|
|
|
|
qout = [[K.zero] for _ in range(n+1)]
|
|
ddm_imatmul(qout, T, q)
|
|
return qout
|