You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
6.8 KiB

from sympy.concrete.summations import Sum
from sympy.core.expr import Expr
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import sin
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.sets.sets import Interval
from sympy.utilities.lambdify import lambdify
from sympy.testing.pytest import raises
from sympy.printing.tensorflow import TensorflowPrinter
from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter
x, y, z = symbols("x,y,z")
i, a, b = symbols("i,a,b")
j, c, d = symbols("j,c,d")
def test_basic():
assert lambdarepr(x*y) == "x*y"
assert lambdarepr(x + y) in ["y + x", "x + y"]
assert lambdarepr(x**y) == "x**y"
def test_matrix():
# Test printing a Matrix that has an element that is printed differently
# with the LambdaPrinter than with the StrPrinter.
e = x % 2
assert lambdarepr(e) != str(e)
assert lambdarepr(Matrix([e])) == 'ImmutableDenseMatrix([[x % 2]])'
def test_piecewise():
# In each case, test eval() the lambdarepr() to make sure there are a
# correct number of parentheses. It will give a SyntaxError if there aren't.
h = "lambda x: "
p = Piecewise((x, x < 0))
l = lambdarepr(p)
eval(h + l)
assert l == "((x) if (x < 0) else None)"
p = Piecewise(
(1, x < 1),
(2, x < 2),
(0, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))"
p = Piecewise(
(1, x < 1),
(2, x < 2),
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x < 1) else (2) if (x < 2) else None)"
p = Piecewise(
(x, x < 1),
(x**2, Interval(3, 4, True, False).contains(x)),
(0, True),
)
l = lambdarepr(p)
eval(h + l)
assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))"
p = Piecewise(
(x**2, x < 0),
(x, x < 1),
(2 - x, x >= 1),
(0, True), evaluate=False
)
l = lambdarepr(p)
eval(h + l)
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
" else (2 - x) if (x >= 1) else (0))"
p = Piecewise(
(x**2, x < 0),
(x, x < 1),
(2 - x, x >= 1), evaluate=False
)
l = lambdarepr(p)
eval(h + l)
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
" else (2 - x) if (x >= 1) else None)"
p = Piecewise(
(1, x >= 1),
(2, x >= 2),
(3, x >= 3),
(4, x >= 4),
(5, x >= 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\
" else (4) if (x >= 4) else (5) if (x >= 5) else (6))"
p = Piecewise(
(1, x <= 1),
(2, x <= 2),
(3, x <= 3),
(4, x <= 4),
(5, x <= 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\
" else (4) if (x <= 4) else (5) if (x <= 5) else (6))"
p = Piecewise(
(1, x > 1),
(2, x > 2),
(3, x > 3),
(4, x > 4),
(5, x > 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\
" else (4) if (x > 4) else (5) if (x > 5) else (6))"
p = Piecewise(
(1, x < 1),
(2, x < 2),
(3, x < 3),
(4, x < 4),
(5, x < 5),
(6, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\
" else (4) if (x < 4) else (5) if (x < 5) else (6))"
p = Piecewise(
(Piecewise(
(1, x > 0),
(2, True)
), y > 0),
(3, True)
)
l = lambdarepr(p)
eval(h + l)
assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))"
def test_sum__1():
# In each case, test eval() the lambdarepr() to make sure that
# it evaluates to the same results as the symbolic expression
s = Sum(x ** i, (i, a, b))
l = lambdarepr(s)
assert l == "(builtins.sum(x**i for i in range(a, b+1)))"
args = x, a, b
f = lambdify(args, s)
v = 2, 3, 8
assert f(*v) == s.subs(zip(args, v)).doit()
def test_sum__2():
s = Sum(i * x, (i, a, b))
l = lambdarepr(s)
assert l == "(builtins.sum(i*x for i in range(a, b+1)))"
args = x, a, b
f = lambdify(args, s)
v = 2, 3, 8
assert f(*v) == s.subs(zip(args, v)).doit()
def test_multiple_sums():
s = Sum(i * x + j, (i, a, b), (j, c, d))
l = lambdarepr(s)
assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))"
args = x, a, b, c, d
f = lambdify(args, s)
vals = 2, 3, 4, 5, 6
f_ref = s.subs(zip(args, vals)).doit()
f_res = f(*vals)
assert f_res == f_ref
def test_sqrt():
prntr = LambdaPrinter({'standard' : 'python3'})
assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
def test_settings():
raises(TypeError, lambda: lambdarepr(sin(x), method="garbage"))
def test_numexpr():
# test ITE rewrite as Piecewise
from sympy.logic.boolalg import ITE
expr = ITE(x > 0, True, False, evaluate=False)
assert NumExprPrinter().doprint(expr) == \
"numexpr.evaluate('where((x > 0), True, False)', truediv=True)"
from sympy.codegen.ast import Return, FunctionDefinition, Variable, Assignment
func_def = FunctionDefinition(None, 'foo', [Variable(x)], [Assignment(y,x), Return(y**2)])
expected = "def foo(x):\n"\
" y = numexpr.evaluate('x', truediv=True)\n"\
" return numexpr.evaluate('y**2', truediv=True)"
assert NumExprPrinter().doprint(func_def) == expected
class CustomPrintedObject(Expr):
def _lambdacode(self, printer):
return 'lambda'
def _tensorflowcode(self, printer):
return 'tensorflow'
def _numpycode(self, printer):
return 'numpy'
def _numexprcode(self, printer):
return 'numexpr'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
# In each case, printmethod is called to test
# its working
obj = CustomPrintedObject()
assert LambdaPrinter().doprint(obj) == 'lambda'
assert TensorflowPrinter().doprint(obj) == 'tensorflow'
assert NumExprPrinter().doprint(obj) == "numexpr.evaluate('numexpr', truediv=True)"
assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \
"numexpr.evaluate('where((x >= 0), y, z)', truediv=True)"