parent
fffc46e8bc
commit
da2e1d58b2
@ -1,105 +0,0 @@
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
import time
|
||||
import pandas as pd
|
||||
from collections import Counter
|
||||
from wordcloud import WordCloud
|
||||
import matplotlib.pyplot as plt
|
||||
cnt = 0
|
||||
# 已爬取视频数
|
||||
danmuku_all = []
|
||||
# 弹幕库
|
||||
|
||||
headers = {
|
||||
"cookie": "cookie",
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
|
||||
}
|
||||
|
||||
|
||||
def get_cid(bvid):
|
||||
url = f"https://api.bilibili.com/x/player/pagelist?bvid={bvid}"
|
||||
try:
|
||||
response = requests.get(url, headers=headers, timeout=10)
|
||||
response.raise_for_status()
|
||||
Json = response.json()
|
||||
return Json['data'][0]['cid']
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"请求失败: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def get_danmuku(cid):
|
||||
if cid is None:
|
||||
return []
|
||||
url = f"https://comment.bilibili.com/{cid}.xml"
|
||||
try:
|
||||
response = requests.get(url, headers=headers, timeout=10)
|
||||
response.encoding = 'utf-8'
|
||||
soup = BeautifulSoup(response.text, 'xml')
|
||||
return [i.text for i in soup.find_all('d')]
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"请求失败: {e}")
|
||||
return []
|
||||
|
||||
|
||||
for Page in range(1, 22): # 1到22页够300个视频
|
||||
url = f'https://api.bilibili.com/x/web-interface/search/type?search_type=video&keyword=巴黎奥运会&page={Page}'
|
||||
try:
|
||||
response = requests.get(url, headers=headers, timeout=10)
|
||||
response.raise_for_status()
|
||||
Json = response.json()
|
||||
results = Json['data']['result']
|
||||
for result in results:
|
||||
cid = get_cid(result['bvid'])
|
||||
danmuku = get_danmuku(cid)
|
||||
danmuku_all.extend(danmuku)
|
||||
cnt += 1
|
||||
if cnt >= 300:
|
||||
break
|
||||
if cnt >= 300:
|
||||
break
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"请求失败: {e}")
|
||||
time.sleep(1) # 延时1秒防止被屏蔽
|
||||
|
||||
|
||||
def filter_danmuku(danmuku_list, keywords):
|
||||
# 筛选包含指定关键词的弹幕
|
||||
keywords_lower = [keyword.lower() for keyword in keywords] # 关键词小写
|
||||
filtered = [d for d in danmuku_list if any(keyword in d.lower() for keyword in keywords_lower)]
|
||||
return filtered
|
||||
|
||||
# 读取弹幕文件
|
||||
with open('所有视频弹幕.txt', 'r', encoding='utf-8') as file:
|
||||
danmuku_all = file.readlines()
|
||||
|
||||
# 筛选包含关键词的弹幕
|
||||
keywords = ['AI配音' , 'ai配音' , '人工智能' , 'ai画图' , 'AI画图' , 'AI识曲' , 'AI生成' , '神经网络' , '卷积神经网络' , '循环神经网络' , '智能家居' , '自动驾驶' , '智能推荐' , '智能算法' , '强化学习' , '计算机视觉' , 'ai还原' , 'ai合成']
|
||||
filtered_danmuku = filter_danmuku(danmuku_all, keywords)
|
||||
# 统计弹幕数量
|
||||
counter = Counter(filtered_danmuku)
|
||||
most_common = counter.most_common(8)
|
||||
# 将结果按列写入Excel
|
||||
data = {'弹幕内容': [content.strip() for content, count in most_common],
|
||||
'数量': [count for content, count in most_common]}
|
||||
df = pd.DataFrame(data)
|
||||
df.to_excel('AI_人工智能_弹幕统计.xlsx', index=False)
|
||||
print("前8位弹幕统计已保存到 'AI_人工智能_弹幕统计.xlsx'.")
|
||||
font_path = r'C:\Windows\Fonts\simhei.ttf'
|
||||
try:
|
||||
df = pd.read_excel('AI_人工智能_弹幕统计.xlsx')
|
||||
if '弹幕内容' not in df.columns:
|
||||
raise ValueError("Excel 文件中没有找到 '弹幕内容' 列")
|
||||
text = ' '.join(df['弹幕内容'].dropna())
|
||||
wordcloud = WordCloud(font_path=font_path, width=800, height=400, background_color='white').generate(text)
|
||||
plt.figure(figsize=(10, 5))
|
||||
plt.imshow(wordcloud, interpolation='bilinear')
|
||||
plt.axis('off')
|
||||
plt.show()
|
||||
wordcloud.to_file('词云图.png')
|
||||
except FileNotFoundError:
|
||||
print("文件未找到,请检查文件路径")
|
||||
except ValueError as ve:
|
||||
print(ve)
|
||||
except Exception as e:
|
||||
print(f"发生错误: {e}")
|
Loading…
Reference in new issue