|
|
|
@ -0,0 +1,31 @@
|
|
|
|
|
def get_images_and_labels(path):
|
|
|
|
|
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
|
|
|
|
|
# 新建连个list用于存放
|
|
|
|
|
face_samples = []
|
|
|
|
|
ids = []
|
|
|
|
|
|
|
|
|
|
# 遍历图片路径,导入图片和id添加到list中
|
|
|
|
|
for image_path in image_paths:
|
|
|
|
|
|
|
|
|
|
# 通过图片路径将其转换为灰度图片
|
|
|
|
|
img = Image.open(image_path).convert('L')
|
|
|
|
|
|
|
|
|
|
# 将图片转化为数组
|
|
|
|
|
img_np = np.array(img, 'uint8')
|
|
|
|
|
|
|
|
|
|
if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# 为了获取id,将图片和路径分裂并获取
|
|
|
|
|
id = int(os.path.split(image_path)[-1].split(".")[1])
|
|
|
|
|
|
|
|
|
|
# 调用熟悉的人脸分类器
|
|
|
|
|
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
|
|
|
|
|
|
|
|
|
faces = detector.detectMultiScale(img_np)
|
|
|
|
|
|
|
|
|
|
# 将获取的图片和id添加到list中
|
|
|
|
|
for (x, y, w, h) in faces:
|
|
|
|
|
face_samples.append(img_np[y:y + h, x:x + w])
|
|
|
|
|
ids.append(id)
|
|
|
|
|
return face_samples, ids
|