xiaokunyu_branch
pvqf6mep3 2 years ago
commit 37e6653753

@ -0,0 +1,803 @@
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// STL A* Search implementation
// (C)2001 Justin Heyes-Jones
//
// This uses my A* code to solve the 8-puzzle
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <stdio.h>
#include <assert.h>
#include <new>
#include <ctype.h>
using namespace std;
// Configuration
#define NUM_TIMES_TO_RUN_SEARCH 1
#define DISPLAY_SOLUTION_FORWARDS 1
#define DISPLAY_SOLUTION_BACKWARDS 0
#define DISPLAY_SOLUTION_INFO 1
#define DEBUG_LISTS 0
// AStar search class
#include "stlastar.h" // See header for copyright and usage information
// Global data
#define BOARD_WIDTH (3)
#define BOARD_HEIGHT (3)
#define GM_TILE (-1)
#define GM_SPACE (0)
#define GM_OFF_BOARD (1)
// Definitions
// To use the search class you must define the following calls...
// Data
// Your own state space information
// Functions
// (Optional) Constructor.
// Nodes are created by the user, so whether you use a
// constructor with parameters as below, or just set the object up after the
// constructor, is up to you.
//
// (Optional) Destructor.
// The destructor will be called if you create one. You
// can rely on the default constructor unless you dynamically allocate something in
// your data
//
// float GoalDistanceEstimate( PuzzleState &nodeGoal );
// Return the estimated cost to goal from this node (pass reference to goal node)
//
// bool IsGoal( PuzzleState &nodeGoal );
// Return true if this node is the goal.
//
// bool GetSuccessors( AStarSearch<PuzzleState> *astarsearch );
// For each successor to this state call the AStarSearch's AddSuccessor call to
// add each one to the current search - return false if you are out of memory and the search
// will fail
//
// float GetCost( PuzzleState *successor );
// Return the cost moving from this state to the state of successor
//
// bool IsSameState( PuzzleState &rhs );
// Return true if the provided state is the same as this state
// Here the example is the 8-puzzle state ...
class PuzzleState
{
public:
// defs
typedef enum
{
TL_SPACE,
TL_1,
TL_2,
TL_3,
TL_4,
TL_5,
TL_6,
TL_7,
TL_8
} TILE;
// data
static TILE g_goal[ BOARD_WIDTH*BOARD_HEIGHT];
static TILE g_start[ BOARD_WIDTH*BOARD_HEIGHT];
// the tile data for the 8-puzzle
TILE tiles[ BOARD_WIDTH*BOARD_HEIGHT ];
// member functions
PuzzleState() {
memcpy( tiles, g_goal, sizeof( TILE ) * BOARD_WIDTH * BOARD_HEIGHT );
}
PuzzleState( TILE *param_tiles )
{
memcpy( tiles, param_tiles, sizeof( TILE ) * BOARD_WIDTH * BOARD_HEIGHT );
}
float GoalDistanceEstimate( PuzzleState &nodeGoal );
bool IsGoal( PuzzleState &nodeGoal );
bool GetSuccessors( AStarSearch<PuzzleState> *astarsearch, PuzzleState *parent_node );
float GetCost( PuzzleState &successor );
bool IsSameState( PuzzleState &rhs );
void PrintNodeInfo();
private:
// User stuff - Just add what you need to help you write the above functions...
void GetSpacePosition( PuzzleState *pn, int *rx, int *ry );
bool LegalMove( TILE *StartTiles, TILE *TargetTiles, int spx, int spy, int tx, int ty );
int GetMap( int x, int y, TILE *tiles );
};
// Goal state
PuzzleState::TILE PuzzleState::g_goal[] =
{
TL_1,
TL_2,
TL_3,
TL_8,
TL_SPACE,
TL_4,
TL_7,
TL_6,
TL_5,
};
// Some nice Start states
PuzzleState::TILE PuzzleState::g_start[] =
{
// Three example start states from Bratko's Prolog Programming for Artificial Intelligence
#if 1
// ex a - 4 steps
TL_1 ,
TL_3 ,
TL_4 ,
TL_8 ,
TL_SPACE ,
TL_2 ,
TL_7 ,
TL_6 ,
TL_5 ,
#elif 0
// ex b - 5 steps
TL_2 ,
TL_8 ,
TL_3 ,
TL_1 ,
TL_6 ,
TL_4 ,
TL_7 ,
TL_SPACE ,
TL_5 ,
#elif 0
// ex c - 18 steps
TL_2 ,
TL_1 ,
TL_6 ,
TL_4 ,
TL_SPACE ,
TL_8 ,
TL_7 ,
TL_5 ,
TL_3 ,
#elif 0
// nasty one - doesn't solve
TL_6 ,
TL_3 ,
TL_SPACE ,
TL_4 ,
TL_8 ,
TL_5 ,
TL_7 ,
TL_2 ,
TL_1 ,
#elif 0
// sent by email - does work though
TL_1 , TL_2 , TL_3 ,
TL_4 , TL_5 , TL_6 ,
TL_8 , TL_7 , TL_SPACE ,
// from http://www.cs.utexas.edu/users/novak/asg-8p.html
//Goal: Easy: Medium: Hard: Worst:
//1 2 3 1 3 4 2 8 1 2 8 1 5 6 7
//8 4 8 6 2 4 3 4 6 3 4 8
//7 6 5 7 5 7 6 5 7 5 3 2 1
#elif 0
// easy 5
TL_1 ,
TL_3 ,
TL_4 ,
TL_8 ,
TL_6 ,
TL_2 ,
TL_7 ,
TL_SPACE ,
TL_5 ,
#elif 0
// medium 9
TL_2 ,
TL_8 ,
TL_1 ,
TL_SPACE ,
TL_4 ,
TL_3 ,
TL_7 ,
TL_6 ,
TL_5 ,
#elif 0
// hard 12
TL_2 ,
TL_8 ,
TL_1 ,
TL_4 ,
TL_6 ,
TL_3 ,
TL_SPACE ,
TL_7 ,
TL_5 ,
#elif 0
// worst 30
TL_5 ,
TL_6 ,
TL_7 ,
TL_4 ,
TL_SPACE ,
TL_8 ,
TL_3 ,
TL_2 ,
TL_1 ,
#elif 0
// 123
// 784
// 65
// two move simple board
TL_1 ,
TL_2 ,
TL_3 ,
TL_7 ,
TL_8 ,
TL_4 ,
TL_SPACE ,
TL_6 ,
TL_5 ,
#elif 0
// a1 b2 c3 d4 e5 f6 g7 h8
//C3,Blank,H8,A1,G8,F6,E5,D4,B2
TL_3 ,
TL_SPACE ,
TL_8 ,
TL_1 ,
TL_8 ,
TL_6 ,
TL_5 ,
TL_4 ,
TL_2 ,
#endif
};
bool PuzzleState::IsSameState( PuzzleState &rhs )
{
for( int i=0; i<(BOARD_HEIGHT*BOARD_WIDTH); i++ )
{
if( tiles[i] != rhs.tiles[i] )
{
return false;
}
}
return true;
}
void PuzzleState::PrintNodeInfo()
{
char str[100];
sprintf( str, "%c %c %c\n%c %c %c\n%c %c %c\n",
tiles[0] + '0',
tiles[1] + '0',
tiles[2] + '0',
tiles[3] + '0',
tiles[4] + '0',
tiles[5] + '0',
tiles[6] + '0',
tiles[7] + '0',
tiles[8] + '0'
);
cout << str;
}
// Here's the heuristic function that estimates the distance from a PuzzleState
// to the Goal.
float PuzzleState::GoalDistanceEstimate( PuzzleState &nodeGoal )
{
// Nilsson's sequence score
int i, cx, cy, ax, ay, h = 0, s, t;
// given a tile this returns the tile that should be clockwise
TILE correct_follower_to[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
TL_SPACE, // always wrong
TL_2,
TL_3,
TL_4,
TL_5,
TL_6,
TL_7,
TL_8,
TL_1,
};
// given a table index returns the index of the tile that is clockwise to it 3*3 only
int clockwise_tile_of[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
1,
2, // 012
5, // 345
0, // 678
-1, // never called with center square
8,
3,
6,
7
};
int tile_x[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
/* TL_SPACE */ 1,
/* TL_1 */ 0,
/* TL_2 */ 1,
/* TL_3 */ 2,
/* TL_4 */ 2,
/* TL_5 */ 2,
/* TL_6 */ 1,
/* TL_7 */ 0,
/* TL_8 */ 0,
};
int tile_y[ BOARD_WIDTH * BOARD_HEIGHT ] =
{
/* TL_SPACE */ 1,
/* TL_1 */ 0,
/* TL_2 */ 0,
/* TL_3 */ 0,
/* TL_4 */ 1,
/* TL_5 */ 2,
/* TL_6 */ 2,
/* TL_7 */ 2,
/* TL_8 */ 1,
};
s=0;
// score 1 point if centre is not correct
if( tiles[(BOARD_HEIGHT*BOARD_WIDTH)/2] != nodeGoal.tiles[(BOARD_HEIGHT*BOARD_WIDTH)/2] )
{
s = 1;
}
for( i=0; i<(BOARD_HEIGHT*BOARD_WIDTH); i++ )
{
// this loop adds up the totaldist element in h and
// the sequence score in s
// the space does not count
if( tiles[i] == TL_SPACE )
{
continue;
}
// get correct x and y of this tile
cx = tile_x[tiles[i]];
cy = tile_y[tiles[i]];
// get actual
ax = i % BOARD_WIDTH;
ay = i / BOARD_WIDTH;
// add manhatten distance to h
h += abs( cx-ax );
h += abs( cy-ay );
// no s score for center tile
if( (ax == (BOARD_WIDTH/2)) && (ay == (BOARD_HEIGHT/2)) )
{
continue;
}
// score 2 points if not followed by successor
if( correct_follower_to[ tiles[i] ] != tiles[ clockwise_tile_of[ i ] ] )
{
s += 2;
}
}
// mult by 3 and add to h
t = h + (3*s);
return (float) t;
}
bool PuzzleState::IsGoal( PuzzleState &nodeGoal )
{
return IsSameState( nodeGoal );
}
// Helper
// Return the x and y position of the space tile
void PuzzleState::GetSpacePosition( PuzzleState *pn, int *rx, int *ry )
{
int x,y;
for( y=0; y<BOARD_HEIGHT; y++ )
{
for( x=0; x<BOARD_WIDTH; x++ )
{
if( pn->tiles[(y*BOARD_WIDTH)+x] == TL_SPACE )
{
*rx = x;
*ry = y;
return;
}
}
}
assert( false && "Something went wrong. There's no space on the board" );
}
int PuzzleState::GetMap( int x, int y, TILE *tiles )
{
if( x < 0 ||
x >= BOARD_WIDTH ||
y < 0 ||
y >= BOARD_HEIGHT
)
return GM_OFF_BOARD;
if( tiles[(y*BOARD_WIDTH)+x] == TL_SPACE )
{
return GM_SPACE;
}
return GM_TILE;
}
// Given a node set of tiles and a set of tiles to move them into, do the move as if it was on a tile board
// note : returns false if the board wasn't changed, and simply returns the tiles as they were in the target
// spx and spy is the space position while tx and ty is the target move from position
bool PuzzleState::LegalMove( TILE *StartTiles, TILE *TargetTiles, int spx, int spy, int tx, int ty )
{
int t;
if( GetMap( spx, spy, StartTiles ) == GM_SPACE )
{
if( GetMap( tx, ty, StartTiles ) == GM_TILE )
{
// copy tiles
for( t=0; t<(BOARD_HEIGHT*BOARD_WIDTH); t++ )
{
TargetTiles[t] = StartTiles[t];
}
TargetTiles[ (ty*BOARD_WIDTH)+tx ] = StartTiles[ (spy*BOARD_WIDTH)+spx ];
TargetTiles[ (spy*BOARD_WIDTH)+spx ] = StartTiles[ (ty*BOARD_WIDTH)+tx ];
return true;
}
}
return false;
}
// This generates the successors to the given PuzzleState. It uses a helper function called
// AddSuccessor to give the successors to the AStar class. The A* specific initialisation
// is done for each node internally, so here you just set the state information that
// is specific to the application
bool PuzzleState::GetSuccessors( AStarSearch<PuzzleState> *astarsearch, PuzzleState *parent_node )
{
PuzzleState NewNode;
int sp_x,sp_y;
GetSpacePosition( this, &sp_x, &sp_y );
bool ret;
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x, sp_y-1 ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x, sp_y+1 ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x-1, sp_y ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
if( LegalMove( tiles, NewNode.tiles, sp_x, sp_y, sp_x+1, sp_y ) == true )
{
ret = astarsearch->AddSuccessor( NewNode );
if( !ret ) return false;
}
return true;
}
// given this node, what does it cost to move to successor. In the case
// of our map the answer is the map terrain value at this node since that is
// conceptually where we're moving
float PuzzleState::GetCost( PuzzleState &successor )
{
return 1.0f; // I love it when life is simple
}
// Main
int puzzle( int argc, char *argv[] )
{
cout << "STL A* 8-puzzle solver implementation\n(C)2001 Justin Heyes-Jones\n";
if( argc > 1 )
{
int i = 0;
int c;
while( (c = argv[1][i]) )
{
if( isdigit( c ) )
{
int num = (c - '0');
PuzzleState::g_start[i] = static_cast<PuzzleState::TILE>(num);
}
i++;
}
}
// Create an instance of the search class...
AStarSearch<PuzzleState> astarsearch;
int NumTimesToSearch = NUM_TIMES_TO_RUN_SEARCH;
while( NumTimesToSearch-- )
{
// Create a start state
PuzzleState nodeStart( PuzzleState::g_start );
// Define the goal state
PuzzleState nodeEnd( PuzzleState::g_goal );
// Set Start and goal states
astarsearch.SetStartAndGoalStates( nodeStart, nodeEnd );
unsigned int SearchState;
unsigned int SearchSteps = 0;
do
{
SearchState = astarsearch.SearchStep();
#if DEBUG_LISTS
float f,g,h;
cout << "Search step " << SearchSteps << endl;
cout << "Open:\n";
PuzzleState *p = astarsearch.GetOpenListStart( f,g,h );
while( p )
{
((PuzzleState *)p)->PrintNodeInfo();
cout << "f: " << f << " g: " << g << " h: " << h << "\n\n";
p = astarsearch.GetOpenListNext( f,g,h );
}
cout << "Closed:\n";
p = astarsearch.GetClosedListStart( f,g,h );
while( p )
{
p->PrintNodeInfo();
cout << "f: " << f << " g: " << g << " h: " << h << "\n\n";
p = astarsearch.GetClosedListNext( f,g,h );
}
#endif
// Test cancel search
#if 0
int StepCount = astarsearch.GetStepCount();
if( StepCount == 10 )
{
astarsearch.CancelSearch();
}
#endif
SearchSteps++;
}
while( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_SEARCHING );
if( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_SUCCEEDED )
{
#if DISPLAY_SOLUTION_FORWARDS
cout << "Search found goal state\n";
#endif
PuzzleState *node = astarsearch.GetSolutionStart();
#if DISPLAY_SOLUTION_FORWARDS
cout << "Displaying solution\n";
#endif
int steps = 0;
#if DISPLAY_SOLUTION_FORWARDS
node->PrintNodeInfo();
cout << endl;
#endif
for( ;; )
{
node = astarsearch.GetSolutionNext();
if( !node )
{
break;
}
#if DISPLAY_SOLUTION_FORWARDS
node->PrintNodeInfo();
cout << endl;
#endif
steps ++;
};
#if DISPLAY_SOLUTION_FORWARDS
// todo move step count into main algorithm
cout << "Solution steps " << steps << endl;
#endif
////////////
node = astarsearch.GetSolutionEnd();
#if DISPLAY_SOLUTION_BACKWARDS
cout << "Displaying reverse solution\n";
#endif
steps = 0;
node->PrintNodeInfo();
cout << endl;
for( ;; )
{
node = astarsearch.GetSolutionPrev();
if( !node )
{
break;
}
#if DISPLAY_SOLUTION_BACKWARDS
node->PrintNodeInfo();
cout << endl;
#endif
steps ++;
};
#if DISPLAY_SOLUTION_BACKWARDS
cout << "Solution steps " << steps << endl;
#endif
//////////////
// Once you're done with the solution you can free the nodes up
astarsearch.FreeSolutionNodes();
}
else if( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_FAILED )
{
#if DISPLAY_SOLUTION_INFO
cout << "Search terminated. Did not find goal state\n";
#endif
}
else if( SearchState == AStarSearch<PuzzleState>::SEARCH_STATE_OUT_OF_MEMORY )
{
#if DISPLAY_SOLUTION_INFO
cout << "Search terminated. Out of memory\n";
#endif
}
// Display the number of loops the search went through
#if DISPLAY_SOLUTION_INFO
cout << "SearchSteps : " << astarsearch.GetStepCount() << endl;
#endif
}
return 0;
}

@ -0,0 +1,343 @@
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// STL A* Search implementation
// (C)2001 Justin Heyes-Jones
//
// Finding a path on a simple grid maze
// This shows how to do shortest path finding using A*
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "stlastar.h" // See header for copyright and usage information
#include <iostream>
#include <stdio.h>
#include <math.h>
#define DEBUG_LISTS 0
#define DEBUG_LIST_LENGTHS_ONLY 0
using namespace std;
// Global data
// The world map
const int MAP_WIDTH = 20;
const int MAP_HEIGHT = 20;
int world_map[ MAP_WIDTH * MAP_HEIGHT ] =
{
// 0001020304050607080910111213141516171819
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 00
1,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,1, // 01
1,9,9,1,1,9,9,9,1,9,1,9,1,9,1,9,9,9,1,1, // 02
1,9,9,1,1,9,9,9,1,9,1,9,1,9,1,9,9,9,1,1, // 03
1,9,1,1,1,1,9,9,1,9,1,9,1,1,1,1,9,9,1,1, // 04
1,9,1,1,9,1,1,1,1,9,1,1,1,1,9,1,1,1,1,1, // 05
1,9,9,9,9,1,1,1,1,1,1,9,9,9,9,1,1,1,1,1, // 06
1,9,9,9,9,9,9,9,9,1,1,1,9,9,9,9,9,9,9,1, // 07
1,9,1,1,1,1,1,1,1,1,1,9,1,1,1,1,1,1,1,1, // 08
1,9,1,9,9,9,9,9,9,9,1,1,9,9,9,9,9,9,9,1, // 09
1,9,1,1,1,1,9,1,1,9,1,1,1,1,1,1,1,1,1,1, // 10
1,9,9,9,9,9,1,9,1,9,1,9,9,9,9,9,1,1,1,1, // 11
1,9,1,9,1,9,9,9,1,9,1,9,1,9,1,9,9,9,1,1, // 12
1,9,1,9,1,9,9,9,1,9,1,9,1,9,1,9,9,9,1,1, // 13
1,9,1,1,1,1,9,9,1,9,1,9,1,1,1,1,9,9,1,1, // 14
1,9,1,1,9,1,1,1,1,9,1,1,1,1,9,1,1,1,1,1, // 15
1,9,9,9,9,1,1,1,1,1,1,9,9,9,9,1,1,1,1,1, // 16
1,1,9,9,9,9,9,9,9,1,1,1,9,9,9,1,9,9,9,9, // 17
1,9,1,1,1,1,1,1,1,1,1,9,1,1,1,1,1,1,1,1, // 18
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 19
};
// map helper functions
int GetMap( int x, int y )
{
if( x < 0 ||
x >= MAP_WIDTH ||
y < 0 ||
y >= MAP_HEIGHT
)
{
return 9;
}
return world_map[(y*MAP_WIDTH)+x];
}
// Definitions
class MapSearchNode
{
public:
int x; // the (x,y) positions of the node
int y;
MapSearchNode() { x = y = 0; }
MapSearchNode( int px, int py ) { x=px; y=py; }
float GoalDistanceEstimate( MapSearchNode &nodeGoal );
bool IsGoal( MapSearchNode &nodeGoal );
bool GetSuccessors( AStarSearch<MapSearchNode> *astarsearch, MapSearchNode *parent_node );
float GetCost( MapSearchNode &successor );
bool IsSameState( MapSearchNode &rhs );
void PrintNodeInfo();
};
bool MapSearchNode::IsSameState( MapSearchNode &rhs )
{
// same state in a maze search is simply when (x,y) are the same
if( (x == rhs.x) &&
(y == rhs.y) )
{
return true;
}
else
{
return false;
}
}
void MapSearchNode::PrintNodeInfo()
{
char str[100];
sprintf( str, "Node position : (%d,%d)\n", x,y );
cout << str;
}
// Here's the heuristic function that estimates the distance from a Node
// to the Goal.
float MapSearchNode::GoalDistanceEstimate( MapSearchNode &nodeGoal )
{
return abs(x - nodeGoal.x) + abs(y - nodeGoal.y);
}
bool MapSearchNode::IsGoal( MapSearchNode &nodeGoal )
{
if( (x == nodeGoal.x) &&
(y == nodeGoal.y) )
{
return true;
}
return false;
}
// This generates the successors to the given Node. It uses a helper function called
// AddSuccessor to give the successors to the AStar class. The A* specific initialisation
// is done for each node internally, so here you just set the state information that
// is specific to the application
bool MapSearchNode::GetSuccessors( AStarSearch<MapSearchNode> *astarsearch, MapSearchNode *parent_node )
{
int parent_x = -1;
int parent_y = -1;
if( parent_node )
{
parent_x = parent_node->x;
parent_y = parent_node->y;
}
MapSearchNode NewNode;
// push each possible move except allowing the search to go backwards
if( (GetMap( x-1, y ) < 9)
&& !((parent_x == x-1) && (parent_y == y))
)
{
NewNode = MapSearchNode( x-1, y );
astarsearch->AddSuccessor( NewNode );
}
if( (GetMap( x, y-1 ) < 9)
&& !((parent_x == x) && (parent_y == y-1))
)
{
NewNode = MapSearchNode( x, y-1 );
astarsearch->AddSuccessor( NewNode );
}
if( (GetMap( x+1, y ) < 9)
&& !((parent_x == x+1) && (parent_y == y))
)
{
NewNode = MapSearchNode( x+1, y );
astarsearch->AddSuccessor( NewNode );
}
if( (GetMap( x, y+1 ) < 9)
&& !((parent_x == x) && (parent_y == y+1))
)
{
NewNode = MapSearchNode( x, y+1 );
astarsearch->AddSuccessor( NewNode );
}
return true;
}
// given this node, what does it cost to move to successor. In the case
// of our map the answer is the map terrain value at this node since that is
// conceptually where we're moving
float MapSearchNode::GetCost( MapSearchNode &successor )
{
return (float) GetMap( x, y );
}
// Main
int findpath( int argc, char *argv[] )
{
cout << "STL A* Search implementation\n(C)2001 Justin Heyes-Jones\n";
// Our sample problem defines the world as a 2d array representing a terrain
// Each element contains an integer from 0 to 5 which indicates the cost
// of travel across the terrain. Zero means the least possible difficulty
// in travelling (think ice rink if you can skate) whilst 5 represents the
// most difficult. 9 indicates that we cannot pass.
// Create an instance of the search class...
AStarSearch<MapSearchNode> astarsearch;
unsigned int SearchCount = 0;
const unsigned int NumSearches = 1;
while(SearchCount < NumSearches)
{
// Create a start state
MapSearchNode nodeStart;
nodeStart.x = rand()%MAP_WIDTH;
nodeStart.y = rand()%MAP_HEIGHT;
// Define the goal state
MapSearchNode nodeEnd;
nodeEnd.x = rand()%MAP_WIDTH;
nodeEnd.y = rand()%MAP_HEIGHT;
// Set Start and goal states
astarsearch.SetStartAndGoalStates( nodeStart, nodeEnd );
unsigned int SearchState;
unsigned int SearchSteps = 0;
do
{
SearchState = astarsearch.SearchStep();
SearchSteps++;
#if DEBUG_LISTS
cout << "Steps:" << SearchSteps << "\n";
int len = 0;
cout << "Open:\n";
MapSearchNode *p = astarsearch.GetOpenListStart();
while( p )
{
len++;
#if !DEBUG_LIST_LENGTHS_ONLY
((MapSearchNode *)p)->PrintNodeInfo();
#endif
p = astarsearch.GetOpenListNext();
}
cout << "Open list has " << len << " nodes\n";
len = 0;
cout << "Closed:\n";
p = astarsearch.GetClosedListStart();
while( p )
{
len++;
#if !DEBUG_LIST_LENGTHS_ONLY
p->PrintNodeInfo();
#endif
p = astarsearch.GetClosedListNext();
}
cout << "Closed list has " << len << " nodes\n";
#endif
}
while( SearchState == AStarSearch<MapSearchNode>::SEARCH_STATE_SEARCHING );
if( SearchState == AStarSearch<MapSearchNode>::SEARCH_STATE_SUCCEEDED )
{
cout << "Search found goal state\n";
MapSearchNode *node = astarsearch.GetSolutionStart();
#if DISPLAY_SOLUTION
cout << "Displaying solution\n";
#endif
int steps = 0;
node->PrintNodeInfo();
for( ;; )
{
node = astarsearch.GetSolutionNext();
if( !node )
{
break;
}
node->PrintNodeInfo();
steps ++;
};
cout << "Solution steps " << steps << endl;
// Once you're done with the solution you can free the nodes up
astarsearch.FreeSolutionNodes();
}
else if( SearchState == AStarSearch<MapSearchNode>::SEARCH_STATE_FAILED )
{
cout << "Search terminated. Did not find goal state\n";
}
// Display the number of loops the search went through
cout << "SearchSteps : " << SearchSteps << "\n";
SearchCount ++;
astarsearch.EnsureMemoryFreed();
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////

@ -0,0 +1,252 @@
/*
A* Algorithm Implementation using STL is
Copyright (C)2001-2005 Justin Heyes-Jones
Permission is given by the author to freely redistribute and
include this code in any program as long as this credit is
given where due.
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE
IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED
CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL
DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE
OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.
Use at your own risk!
FixedSizeAllocator class
Copyright 2001 Justin Heyes-Jones
This class is a constant time O(1) memory manager for objects of
a specified type. The type is specified using a template class.
Memory is allocated from a fixed size buffer which you can specify in the
class constructor or use the default.
Using GetFirst and GetNext it is possible to iterate through the elements
one by one, and this would be the most common use for the class.
I would suggest using this class when you want O(1) add and delete
and you don't do much searching, which would be O(n). Structures such as binary
trees can be used instead to get O(logn) access time.
*/
#ifndef FSA_H
#define FSA_H
#include <string.h>
#include <stdio.h>
template <class USER_TYPE> class FixedSizeAllocator
{
public:
// Constants
enum
{
FSA_DEFAULT_SIZE = 100
};
// This class enables us to transparently manage the extra data
// needed to enable the user class to form part of the double-linked
// list class
struct FSA_ELEMENT
{
USER_TYPE UserType;
FSA_ELEMENT *pPrev;
FSA_ELEMENT *pNext;
};
public: // methods
FixedSizeAllocator( unsigned int MaxElements = FSA_DEFAULT_SIZE ) :
m_pFirstUsed( NULL ),
m_MaxElements( MaxElements )
{
// Allocate enough memory for the maximum number of elements
char *pMem = new char[ m_MaxElements * sizeof(FSA_ELEMENT) ];
m_pMemory = (FSA_ELEMENT *) pMem;
// Set the free list first pointer
m_pFirstFree = m_pMemory;
// Clear the memory
memset( m_pMemory, 0, sizeof( FSA_ELEMENT ) * m_MaxElements );
// Point at first element
FSA_ELEMENT *pElement = m_pFirstFree;
// Set the double linked free list
for( unsigned int i=0; i<m_MaxElements; i++ )
{
pElement->pPrev = pElement-1;
pElement->pNext = pElement+1;
pElement++;
}
// first element should have a null prev
m_pFirstFree->pPrev = NULL;
// last element should have a null next
(pElement-1)->pNext = NULL;
}
~FixedSizeAllocator()
{
// Free up the memory
delete [] (char *) m_pMemory;
}
// Allocate a new USER_TYPE and return a pointer to it
USER_TYPE *alloc()
{
FSA_ELEMENT *pNewNode = NULL;
if( !m_pFirstFree )
{
return NULL;
}
else
{
pNewNode = m_pFirstFree;
m_pFirstFree = pNewNode->pNext;
// if the new node points to another free node then
// change that nodes prev free pointer...
if( pNewNode->pNext )
{
pNewNode->pNext->pPrev = NULL;
}
// node is now on the used list
pNewNode->pPrev = NULL; // the allocated node is always first in the list
if( m_pFirstUsed == NULL )
{
pNewNode->pNext = NULL; // no other nodes
}
else
{
m_pFirstUsed->pPrev = pNewNode; // insert this at the head of the used list
pNewNode->pNext = m_pFirstUsed;
}
m_pFirstUsed = pNewNode;
}
return reinterpret_cast<USER_TYPE*>(pNewNode);
}
// Free the given user type
// For efficiency I don't check whether the user_data is a valid
// pointer that was allocated. I may add some debug only checking
// (To add the debug check you'd need to make sure the pointer is in
// the m_pMemory area and is pointing at the start of a node)
void free( USER_TYPE *user_data )
{
FSA_ELEMENT *pNode = reinterpret_cast<FSA_ELEMENT*>(user_data);
// manage used list, remove this node from it
if( pNode->pPrev )
{
pNode->pPrev->pNext = pNode->pNext;
}
else
{
// this handles the case that we delete the first node in the used list
m_pFirstUsed = pNode->pNext;
}
if( pNode->pNext )
{
pNode->pNext->pPrev = pNode->pPrev;
}
// add to free list
if( m_pFirstFree == NULL )
{
// free list was empty
m_pFirstFree = pNode;
pNode->pPrev = NULL;
pNode->pNext = NULL;
}
else
{
// Add this node at the start of the free list
m_pFirstFree->pPrev = pNode;
pNode->pNext = m_pFirstFree;
m_pFirstFree = pNode;
}
}
// For debugging this displays both lists (using the prev/next list pointers)
void Debug()
{
printf( "free list " );
FSA_ELEMENT *p = m_pFirstFree;
while( p )
{
printf( "%x!%x ", p->pPrev, p->pNext );
p = p->pNext;
}
printf( "\n" );
printf( "used list " );
p = m_pFirstUsed;
while( p )
{
printf( "%x!%x ", p->pPrev, p->pNext );
p = p->pNext;
}
printf( "\n" );
}
// Iterators
USER_TYPE *GetFirst()
{
return reinterpret_cast<USER_TYPE *>(m_pFirstUsed);
}
USER_TYPE *GetNext( USER_TYPE *node )
{
return reinterpret_cast<USER_TYPE *>
(
(reinterpret_cast<FSA_ELEMENT *>(node))->pNext
);
}
public: // data
private: // methods
private: // data
FSA_ELEMENT *m_pFirstFree;
FSA_ELEMENT *m_pFirstUsed;
unsigned int m_MaxElements;
FSA_ELEMENT *m_pMemory;
};
#endif // defined FSA_H

@ -0,0 +1,315 @@
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// This example code illustrate how to use STL A* Search implementation to find the minimum path between two
// cities given a map. The example is taken from the book AI: A Modern Approach, 3rd Ed., by Russel, where a map
// of Romania is given. The target node is Bucharest, and the user can specify the initial city from which the
// search algorithm will start looking for the minimum path to Bucharest.
//
// Usage: min_path_to_Bucharest <start city name>
// Example:
// min_path_to_Bucharest Arad
//
// Thanks to Rasoul Mojtahedzadeh for this contribution
// Mojtahedzadeh _atsign_ gmail com
//
// Please note that this exercise is academic in nature and that the distances between the cities may not be
// correct compared to the latitude and longnitude differences in real life. Thanks to parthi2929 for noticing
// this issue. In a real application you would use some kind of exact x,y position of each city in order to get
// accurate heuristics. In fact, that is part of the point of this example, in the book you will see Norvig
// mention that the algorithm does some backtracking because the heuristic is not accurate (yet still admissable).
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "stlastar.h"
#include <iostream>
#include <string>
#include <vector>
#include <stdio.h>
#define DEBUG_LISTS 0
#define DEBUG_LIST_LENGTHS_ONLY 0
using namespace std;
const int MAX_CITIES = 20;
enum ENUM_CITIES{Arad=0, Bucharest, Craiova, Drobeta, Eforie, Fagaras, Giurgiu, Hirsova, Iasi, Lugoj, Mehadia, Neamt, Oradea, Pitesti, RimnicuVilcea, Sibiu, Timisoara, Urziceni, Vaslui, Zerind};
vector<string> CityNames(MAX_CITIES);
float RomaniaMap[MAX_CITIES][MAX_CITIES];
class PathSearchNode
{
public:
ENUM_CITIES city;
PathSearchNode() { city = Arad; }
PathSearchNode( ENUM_CITIES in ) { city = in; }
float GoalDistanceEstimate( PathSearchNode &nodeGoal );
bool IsGoal( PathSearchNode &nodeGoal );
bool GetSuccessors( AStarSearch<PathSearchNode> *astarsearch, PathSearchNode *parent_node );
float GetCost( PathSearchNode &successor );
bool IsSameState( PathSearchNode &rhs );
void PrintNodeInfo();
};
// check if "this" node is the same as "rhs" node
bool PathSearchNode::IsSameState( PathSearchNode &rhs )
{
if(city == rhs.city) return(true);
return(false);
}
// Euclidean distance between "this" node city and Bucharest
// Note: Numbers are taken from the book
float PathSearchNode::GoalDistanceEstimate( PathSearchNode &nodeGoal )
{
// goal is always Bucharest!
switch(city)
{
case Arad: return 366; break;
case Bucharest: return 0; break;
case Craiova: return 160; break;
case Drobeta: return 242; break;
case Eforie: return 161; break;
case Fagaras: return 176; break;
case Giurgiu: return 77; break;
case Hirsova: return 151; break;
case Iasi: return 226; break;
case Lugoj: return 244; break;
case Mehadia: return 241; break;
case Neamt: return 234; break;
case Oradea: return 380; break;
case Pitesti: return 100; break;
case RimnicuVilcea: return 193; break;
case Sibiu: return 253; break;
case Timisoara: return 329; break;
case Urziceni: return 80; break;
case Vaslui: return 199; break;
case Zerind: return 374; break;
}
cerr << "ASSERT: city = " << CityNames[city] << endl;
return 0;
}
// check if "this" node is the goal node
bool PathSearchNode::IsGoal( PathSearchNode &nodeGoal )
{
if( city == Bucharest ) return(true);
return(false);
}
// generates the successor nodes of "this" node
bool PathSearchNode::GetSuccessors( AStarSearch<PathSearchNode> *astarsearch, PathSearchNode *parent_node )
{
PathSearchNode NewNode;
for(int c=0; c<MAX_CITIES; c++)
{
if(RomaniaMap[city][c] < 0) continue;
NewNode = PathSearchNode((ENUM_CITIES)c);
astarsearch->AddSuccessor( NewNode );
}
return true;
}
// the cost of going from "this" node to the "successor" node
float PathSearchNode::GetCost( PathSearchNode &successor )
{
return RomaniaMap[city][successor.city];
}
// prints out information about the node
void PathSearchNode::PrintNodeInfo()
{
cout << " " << CityNames[city] << "\n";
}
// Main
int min_path_to_Bucharest( int argc, char *argv[] )
{
// creating map of Romania
for(int i=0; i<MAX_CITIES; i++)
for(int j=0; j<MAX_CITIES; j++)
RomaniaMap[i][j]=-1.0;
RomaniaMap[Arad][Sibiu]=140;
RomaniaMap[Arad][Zerind]=75;
RomaniaMap[Arad][Timisoara]=118;
RomaniaMap[Bucharest][Giurgiu]=90;
RomaniaMap[Bucharest][Urziceni]=85;
RomaniaMap[Bucharest][Fagaras]=211;
RomaniaMap[Bucharest][Pitesti]=101;
RomaniaMap[Craiova][Drobeta]=120;
RomaniaMap[Craiova][RimnicuVilcea]=146;
RomaniaMap[Craiova][Pitesti]=138;
RomaniaMap[Drobeta][Craiova]=120;
RomaniaMap[Drobeta][Mehadia]=75;
RomaniaMap[Eforie][Hirsova]=75;
RomaniaMap[Fagaras][Bucharest]=211;
RomaniaMap[Fagaras][Sibiu]=99;
RomaniaMap[Giurgiu][Bucharest]=90;
RomaniaMap[Hirsova][Eforie]=86;
RomaniaMap[Hirsova][Urziceni]=98;
RomaniaMap[Iasi][Vaslui]=92;
RomaniaMap[Iasi][Neamt]=87;
RomaniaMap[Lugoj][Timisoara]=111;
RomaniaMap[Lugoj][Mehadia]=70;
RomaniaMap[Mehadia][Lugoj]=70;
RomaniaMap[Mehadia][Drobeta]=75;
RomaniaMap[Neamt][Iasi]=87;
RomaniaMap[Oradea][Zerind]=71;
RomaniaMap[Oradea][Sibiu]=151;
RomaniaMap[Pitesti][Bucharest]=101;
RomaniaMap[Pitesti][RimnicuVilcea]=97;
RomaniaMap[Pitesti][Craiova]=138;
RomaniaMap[RimnicuVilcea][Pitesti]=97;
RomaniaMap[RimnicuVilcea][Craiova]=146;
RomaniaMap[RimnicuVilcea][Sibiu]=80;
RomaniaMap[Sibiu][RimnicuVilcea]=80;
RomaniaMap[Sibiu][Fagaras]=99;
RomaniaMap[Sibiu][Oradea]=151;
RomaniaMap[Sibiu][Arad]=140;
RomaniaMap[Timisoara][Arad]=118;
RomaniaMap[Timisoara][Lugoj]=111;
RomaniaMap[Urziceni][Bucharest]=85;
RomaniaMap[Urziceni][Hirsova]=98;
RomaniaMap[Urziceni][Vaslui]=142;
RomaniaMap[Vaslui][Urziceni]=142;
RomaniaMap[Vaslui][Iasi]=92;
RomaniaMap[Zerind][Arad]=75;
RomaniaMap[Zerind][Oradea]=71;
// City names
CityNames[Arad].assign("Arad");
CityNames[Bucharest].assign("Bucharest");
CityNames[Craiova].assign("Craiova");
CityNames[Drobeta].assign("Drobeta");
CityNames[Eforie].assign("Eforie");
CityNames[Fagaras].assign("Fagaras");
CityNames[Giurgiu].assign("Giurgiu");
CityNames[Hirsova].assign("Hirsova");
CityNames[Iasi].assign("Iasi");
CityNames[Lugoj].assign("Lugoj");
CityNames[Mehadia].assign("Mehadia");
CityNames[Neamt].assign("Neamt");
CityNames[Oradea].assign("Oradea");
CityNames[Pitesti].assign("Pitesti");
CityNames[RimnicuVilcea].assign("RimnicuVilcea");
CityNames[Sibiu].assign("Sibiu");
CityNames[Timisoara].assign("Timisoara");
CityNames[Urziceni].assign("Urziceni");
CityNames[Vaslui].assign("Vaslui");
CityNames[Zerind].assign("Zerind");
ENUM_CITIES initCity = Arad;
if(argc == 2)
{
bool found = false;
for(size_t i=0; i<CityNames.size(); i++)
if(CityNames[i].compare(argv[1])==0)
{
initCity = (ENUM_CITIES)i;
found = true;
break;
}
if(not found)
{
cout << "There is no city named "<<argv[1]<<" in the map!\n";
return(1);
}
}
// An instance of A* search class
AStarSearch<PathSearchNode> astarsearch;
unsigned int SearchCount = 0;
const unsigned int NumSearches = 1;
while(SearchCount < NumSearches)
{
// Create a start state
PathSearchNode nodeStart;
nodeStart.city = initCity;
// Define the goal state, always Bucharest!
PathSearchNode nodeEnd;
nodeEnd.city = Bucharest;
// Set Start and goal states
astarsearch.SetStartAndGoalStates( nodeStart, nodeEnd );
unsigned int SearchState;
unsigned int SearchSteps = 0;
do
{
SearchState = astarsearch.SearchStep();
SearchSteps++;
#if DEBUG_LISTS
cout << "Steps:" << SearchSteps << "\n";
int len = 0;
cout << "Open:\n";
PathSearchNode *p = astarsearch.GetOpenListStart();
while( p )
{
len++;
#if !DEBUG_LIST_LENGTHS_ONLY
((PathSearchNode *)p)->PrintNodeInfo();
#endif
p = astarsearch.GetOpenListNext();
}
cout << "Open list has " << len << " nodes\n";
len = 0;
cout << "Closed:\n";
p = astarsearch.GetClosedListStart();
while( p )
{
len++;
#if !DEBUG_LIST_LENGTHS_ONLY
p->PrintNodeInfo();
#endif
p = astarsearch.GetClosedListNext();
}
cout << "Closed list has " << len << " nodes\n";
#endif
}
while( SearchState == AStarSearch<PathSearchNode>::SEARCH_STATE_SEARCHING );
if( SearchState == AStarSearch<PathSearchNode>::SEARCH_STATE_SUCCEEDED )
{
cout << "Search found the goal state\n";
PathSearchNode *node = astarsearch.GetSolutionStart();
cout << "Displaying solution\n";
int steps = 0;
node->PrintNodeInfo();
for( ;; )
{
node = astarsearch.GetSolutionNext();
if( !node ) break;
node->PrintNodeInfo();
steps ++;
};
cout << "Solution steps " << steps << endl;
// Once you're done with the solution you can free the nodes up
astarsearch.FreeSolutionNodes();
}
else if( SearchState == AStarSearch<PathSearchNode>::SEARCH_STATE_FAILED )
{
cout << "Search terminated. Did not find goal state\n";
}
// Display the number of loops the search went through
cout << "SearchSteps : " << SearchSteps << "\n";
SearchCount ++;
astarsearch.EnsureMemoryFreed();
}
return 0;
}

@ -0,0 +1,833 @@
/*
A* Algorithm Implementation using STL is
Copyright (C)2001-2005 Justin Heyes-Jones
Permission is given by the author to freely redistribute and
include this code in any program as long as this credit is
given where due.
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE
IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED
CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL
DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE
OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.
Use at your own risk!
*/
#ifndef STLASTAR_H
#define STLASTAR_H
// used for text debugging
#include <iostream>
#include <stdio.h>
//#include <conio.h>
#include <assert.h>
// stl includes
#include <algorithm>
#include <set>
#include <vector>
#include <cfloat>
using namespace std;
// fast fixed size memory allocator, used for fast node memory management
#include "fsa.h"
// Fixed size memory allocator can be disabled to compare performance
// Uses std new and delete instead if you turn it off
#define USE_FSA_MEMORY 1
// disable warning that debugging information has lines that are truncated
// occurs in stl headers
#if defined(WIN32) && defined(_WINDOWS)
#pragma warning( disable : 4786 )
#endif
template <class T> class AStarState;
// The AStar search class. UserState is the users state space type
template <class UserState> class AStarSearch
{
public: // data
enum
{
SEARCH_STATE_NOT_INITIALISED,
SEARCH_STATE_SEARCHING,
SEARCH_STATE_SUCCEEDED,
SEARCH_STATE_FAILED,
SEARCH_STATE_OUT_OF_MEMORY,
SEARCH_STATE_INVALID
};
// A node represents a possible state in the search
// The user provided state type is included inside this type
public:
class Node
{
public:
Node *parent; // used during the search to record the parent of successor nodes
Node *child; // used after the search for the application to view the search in reverse
float g; // cost of this node + it's predecessors
float h; // heuristic estimate of distance to goal
float f; // sum of cumulative cost of predecessors and self and heuristic
Node() :
parent( 0 ),
child( 0 ),
g( 0.0f ),
h( 0.0f ),
f( 0.0f )
{
}
UserState m_UserState;
};
// For sorting the heap the STL needs compare function that lets us compare
// the f value of two nodes
class HeapCompare_f
{
public:
bool operator() ( const Node *x, const Node *y ) const
{
return x->f > y->f;
}
};
public: // methods
// constructor just initialises private data
AStarSearch() :
m_State( SEARCH_STATE_NOT_INITIALISED ),
m_CurrentSolutionNode( NULL ),
#if USE_FSA_MEMORY
m_FixedSizeAllocator( 1000 ),
#endif
m_AllocateNodeCount(0),
m_CancelRequest( false )
{
}
AStarSearch( int MaxNodes ) :
m_State( SEARCH_STATE_NOT_INITIALISED ),
m_CurrentSolutionNode( NULL ),
#if USE_FSA_MEMORY
m_FixedSizeAllocator( MaxNodes ),
#endif
m_AllocateNodeCount(0),
m_CancelRequest( false )
{
}
// call at any time to cancel the search and free up all the memory
void CancelSearch()
{
m_CancelRequest = true;
}
// Set Start and goal states
void SetStartAndGoalStates( UserState &Start, UserState &Goal )
{
m_CancelRequest = false;
m_Start = AllocateNode();
m_Goal = AllocateNode();
assert((m_Start != NULL && m_Goal != NULL));
m_Start->m_UserState = Start;
m_Goal->m_UserState = Goal;
m_State = SEARCH_STATE_SEARCHING;
// Initialise the AStar specific parts of the Start Node
// The user only needs fill out the state information
m_Start->g = 0;
m_Start->h = m_Start->m_UserState.GoalDistanceEstimate( m_Goal->m_UserState );
m_Start->f = m_Start->g + m_Start->h;
m_Start->parent = 0;
// Push the start node on the Open list
m_OpenList.push_back( m_Start ); // heap now unsorted
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
// Initialise counter for search steps
m_Steps = 0;
}
// Advances search one step
unsigned int SearchStep()
{
// Firstly break if the user has not initialised the search
assert( (m_State > SEARCH_STATE_NOT_INITIALISED) &&
(m_State < SEARCH_STATE_INVALID) );
// Next I want it to be safe to do a searchstep once the search has succeeded...
if( (m_State == SEARCH_STATE_SUCCEEDED) ||
(m_State == SEARCH_STATE_FAILED)
)
{
return m_State;
}
// Failure is defined as emptying the open list as there is nothing left to
// search...
// New: Allow user abort
if( m_OpenList.empty() || m_CancelRequest )
{
FreeAllNodes();
m_State = SEARCH_STATE_FAILED;
return m_State;
}
// Incremement step count
m_Steps ++;
// Pop the best node (the one with the lowest f)
Node *n = m_OpenList.front(); // get pointer to the node
pop_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
m_OpenList.pop_back();
// Check for the goal, once we pop that we're done
if( n->m_UserState.IsGoal( m_Goal->m_UserState ) )
{
// The user is going to use the Goal Node he passed in
// so copy the parent pointer of n
m_Goal->parent = n->parent;
m_Goal->g = n->g;
// A special case is that the goal was passed in as the start state
// so handle that here
if( false == n->m_UserState.IsSameState( m_Start->m_UserState ) )
{
FreeNode( n );
// set the child pointers in each node (except Goal which has no child)
Node *nodeChild = m_Goal;
Node *nodeParent = m_Goal->parent;
do
{
nodeParent->child = nodeChild;
nodeChild = nodeParent;
nodeParent = nodeParent->parent;
}
while( nodeChild != m_Start ); // Start is always the first node by definition
}
// delete nodes that aren't needed for the solution
FreeUnusedNodes();
m_State = SEARCH_STATE_SUCCEEDED;
return m_State;
}
else // not goal
{
// We now need to generate the successors of this node
// The user helps us to do this, and we keep the new nodes in
// m_Successors ...
m_Successors.clear(); // empty vector of successor nodes to n
// User provides this functions and uses AddSuccessor to add each successor of
// node 'n' to m_Successors
bool ret = n->m_UserState.GetSuccessors( this, n->parent ? &n->parent->m_UserState : NULL );
if( !ret )
{
typename vector< Node * >::iterator successor;
// free the nodes that may previously have been added
for( successor = m_Successors.begin(); successor != m_Successors.end(); successor ++ )
{
FreeNode( (*successor) );
}
m_Successors.clear(); // empty vector of successor nodes to n
// free up everything else we allocated
FreeNode( (n) );
FreeAllNodes();
m_State = SEARCH_STATE_OUT_OF_MEMORY;
return m_State;
}
// Now handle each successor to the current node ...
for( typename vector< Node * >::iterator successor = m_Successors.begin(); successor != m_Successors.end(); successor ++ )
{
// The g value for this successor ...
float newg = n->g + n->m_UserState.GetCost( (*successor)->m_UserState );
// Now we need to find whether the node is on the open or closed lists
// If it is but the node that is already on them is better (lower g)
// then we can forget about this successor
// First linear search of open list to find node
typename vector< Node * >::iterator openlist_result;
for( openlist_result = m_OpenList.begin(); openlist_result != m_OpenList.end(); openlist_result ++ )
{
if( (*openlist_result)->m_UserState.IsSameState( (*successor)->m_UserState ) )
{
break;
}
}
if( openlist_result != m_OpenList.end() )
{
// we found this state on open
if( (*openlist_result)->g <= newg )
{
FreeNode( (*successor) );
// the one on Open is cheaper than this one
continue;
}
}
typename vector< Node * >::iterator closedlist_result;
for( closedlist_result = m_ClosedList.begin(); closedlist_result != m_ClosedList.end(); closedlist_result ++ )
{
if( (*closedlist_result)->m_UserState.IsSameState( (*successor)->m_UserState ) )
{
break;
}
}
if( closedlist_result != m_ClosedList.end() )
{
// we found this state on closed
if( (*closedlist_result)->g <= newg )
{
// the one on Closed is cheaper than this one
FreeNode( (*successor) );
continue;
}
}
// This node is the best node so far with this particular state
// so lets keep it and set up its AStar specific data ...
(*successor)->parent = n;
(*successor)->g = newg;
(*successor)->h = (*successor)->m_UserState.GoalDistanceEstimate( m_Goal->m_UserState );
(*successor)->f = (*successor)->g + (*successor)->h;
// Successor in closed list
// 1 - Update old version of this node in closed list
// 2 - Move it from closed to open list
// 3 - Sort heap again in open list
if( closedlist_result != m_ClosedList.end() )
{
// Update closed node with successor node AStar data
//*(*closedlist_result) = *(*successor);
(*closedlist_result)->parent = (*successor)->parent;
(*closedlist_result)->g = (*successor)->g;
(*closedlist_result)->h = (*successor)->h;
(*closedlist_result)->f = (*successor)->f;
// Free successor node
FreeNode( (*successor) );
// Push closed node into open list
m_OpenList.push_back( (*closedlist_result) );
// Remove closed node from closed list
m_ClosedList.erase( closedlist_result );
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
// Fix thanks to ...
// Greg Douglas <gregdouglasmail@gmail.com>
// who noticed that this code path was incorrect
// Here we have found a new state which is already CLOSED
}
// Successor in open list
// 1 - Update old version of this node in open list
// 2 - sort heap again in open list
else if( openlist_result != m_OpenList.end() )
{
// Update open node with successor node AStar data
//*(*openlist_result) = *(*successor);
(*openlist_result)->parent = (*successor)->parent;
(*openlist_result)->g = (*successor)->g;
(*openlist_result)->h = (*successor)->h;
(*openlist_result)->f = (*successor)->f;
// Free successor node
FreeNode( (*successor) );
// re-make the heap
// make_heap rather than sort_heap is an essential bug fix
// thanks to Mike Ryynanen for pointing this out and then explaining
// it in detail. sort_heap called on an invalid heap does not work
make_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
}
// New successor
// 1 - Move it from successors to open list
// 2 - sort heap again in open list
else
{
// Push successor node into open list
m_OpenList.push_back( (*successor) );
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
}
}
// push n onto Closed, as we have expanded it now
m_ClosedList.push_back( n );
} // end else (not goal so expand)
return m_State; // Succeeded bool is false at this point.
}
// User calls this to add a successor to a list of successors
// when expanding the search frontier
bool AddSuccessor( UserState &State )
{
Node *node = AllocateNode();
if( node )
{
node->m_UserState = State;
m_Successors.push_back( node );
return true;
}
return false;
}
// Free the solution nodes
// This is done to clean up all used Node memory when you are done with the
// search
void FreeSolutionNodes()
{
Node *n = m_Start;
if( m_Start->child )
{
do
{
Node *del = n;
n = n->child;
FreeNode( del );
del = NULL;
} while( n != m_Goal );
FreeNode( n ); // Delete the goal
}
else
{
// if the start node is the solution we need to just delete the start and goal
// nodes
FreeNode( m_Start );
FreeNode( m_Goal );
}
}
// Functions for traversing the solution
// Get start node
UserState *GetSolutionStart()
{
m_CurrentSolutionNode = m_Start;
if( m_Start )
{
return &m_Start->m_UserState;
}
else
{
return NULL;
}
}
// Get next node
UserState *GetSolutionNext()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->child )
{
Node *child = m_CurrentSolutionNode->child;
m_CurrentSolutionNode = m_CurrentSolutionNode->child;
return &child->m_UserState;
}
}
return NULL;
}
// Get end node
UserState *GetSolutionEnd()
{
m_CurrentSolutionNode = m_Goal;
if( m_Goal )
{
return &m_Goal->m_UserState;
}
else
{
return NULL;
}
}
// Step solution iterator backwards
UserState *GetSolutionPrev()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->parent )
{
Node *parent = m_CurrentSolutionNode->parent;
m_CurrentSolutionNode = m_CurrentSolutionNode->parent;
return &parent->m_UserState;
}
}
return NULL;
}
// Get final cost of solution
// Returns FLT_MAX if goal is not defined or there is no solution
float GetSolutionCost()
{
if( m_Goal && m_State == SEARCH_STATE_SUCCEEDED )
{
return m_Goal->g;
}
else
{
return FLT_MAX;
}
}
// For educational use and debugging it is useful to be able to view
// the open and closed list at each step, here are two functions to allow that.
UserState *GetOpenListStart()
{
float f,g,h;
return GetOpenListStart( f,g,h );
}
UserState *GetOpenListStart( float &f, float &g, float &h )
{
iterDbgOpen = m_OpenList.begin();
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetOpenListNext()
{
float f,g,h;
return GetOpenListNext( f,g,h );
}
UserState *GetOpenListNext( float &f, float &g, float &h )
{
iterDbgOpen++;
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetClosedListStart()
{
float f,g,h;
return GetClosedListStart( f,g,h );
}
UserState *GetClosedListStart( float &f, float &g, float &h )
{
iterDbgClosed = m_ClosedList.begin();
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
UserState *GetClosedListNext()
{
float f,g,h;
return GetClosedListNext( f,g,h );
}
UserState *GetClosedListNext( float &f, float &g, float &h )
{
iterDbgClosed++;
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
// Get the number of steps
int GetStepCount() { return m_Steps; }
void EnsureMemoryFreed()
{
#if USE_FSA_MEMORY
assert(m_AllocateNodeCount == 0);
#endif
}
private: // methods
// This is called when a search fails or is cancelled to free all used
// memory
void FreeAllNodes()
{
// iterate open list and delete all nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
FreeNode( n );
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
FreeNode( n );
}
m_ClosedList.clear();
// delete the goal
FreeNode(m_Goal);
}
// This call is made by the search class when the search ends. A lot of nodes may be
// created that are still present when the search ends. They will be deleted by this
// routine once the search ends
void FreeUnusedNodes()
{
// iterate open list and delete unused nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
}
m_ClosedList.clear();
}
// Node memory management
Node *AllocateNode()
{
#if !USE_FSA_MEMORY
m_AllocateNodeCount ++;
Node *p = new Node;
return p;
#else
Node *address = m_FixedSizeAllocator.alloc();
if( !address )
{
return NULL;
}
m_AllocateNodeCount ++;
Node *p = new (address) Node;
return p;
#endif
}
void FreeNode( Node *node )
{
m_AllocateNodeCount --;
#if !USE_FSA_MEMORY
delete node;
#else
node->~Node();
m_FixedSizeAllocator.free( node );
#endif
}
private: // data
// Heap (simple vector but used as a heap, cf. Steve Rabin's game gems article)
vector< Node *> m_OpenList;
// Closed list is a vector.
vector< Node * > m_ClosedList;
// Successors is a vector filled out by the user each type successors to a node
// are generated
vector< Node * > m_Successors;
// State
unsigned int m_State;
// Counts steps
int m_Steps;
// Start and goal state pointers
Node *m_Start;
Node *m_Goal;
Node *m_CurrentSolutionNode;
#if USE_FSA_MEMORY
// Memory
FixedSizeAllocator<Node> m_FixedSizeAllocator;
#endif
//Debug : need to keep these two iterators around
// for the user Dbg functions
typename vector< Node * >::iterator iterDbgOpen;
typename vector< Node * >::iterator iterDbgClosed;
// debugging : count memory allocation and free's
int m_AllocateNodeCount;
bool m_CancelRequest;
};
template <class T> class AStarState
{
public:
virtual ~AStarState() {}
virtual float GoalDistanceEstimate( T &nodeGoal ) = 0; // Heuristic function which computes the estimated cost to the goal node
virtual bool IsGoal( T &nodeGoal ) = 0; // Returns true if this node is the goal node
virtual bool GetSuccessors( AStarSearch<T> *astarsearch, T *parent_node ) = 0; // Retrieves all successors to this node and adds them via astarsearch.addSuccessor()
virtual float GetCost( T &successor ) = 0; // Computes the cost of travelling from this node to the successor node
virtual bool IsSameState( T &rhs ) = 0; // Returns true if this node is the same as the rhs node
};
#endif
Loading…
Cancel
Save