parent
8311a224e2
commit
089a2ece46
@ -1,2 +1,76 @@
|
||||
# FineTune
|
||||
|
||||
!pip install paddlehub==1.8.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
import paddlehub as hub
|
||||
module = hub.Module(name="mobilenet_v2_imagenet")
|
||||
!unzip -o /data/shixunfiles/26a2e3c3b2c50fe54e2fcab6e031a141_1607408726958.zip
|
||||
from paddlehub.dataset.base_cv_dataset import BaseCVDataset
|
||||
class DemoDataset(BaseCVDataset):
|
||||
def __init__(self):
|
||||
self.dataset_dir="car_datasets"
|
||||
super(DemoDataset, self).__init__(
|
||||
base_path=self.dataset_dir,
|
||||
train_list_file="train_list.txt",
|
||||
validate_list_file="validate_list.txt",
|
||||
test_list_file="test_list.txt",
|
||||
label_list_file="label_list.txt",
|
||||
)
|
||||
dataset=DemoDataset()
|
||||
data_reader=hub.reader.ImageClassificationReader(
|
||||
image_width=module.get_expected_image_width(),
|
||||
image_height=module.get_expected_image_height(),
|
||||
images_mean=module.get_pretrained_images_mean(),
|
||||
images_std=module.get_pretrained_images_std(),
|
||||
dataset=dataset)
|
||||
config = hub.RunConfig(
|
||||
use_cuda=False,
|
||||
num_epoch=10,
|
||||
batch_size=32,
|
||||
eval_interval=50,
|
||||
strategy=hub.finetune.strategy.DefaultFinetuneStrategy())
|
||||
input_dict, output_dict, program = module.context(trainable=True)
|
||||
img = input_dict["image"]
|
||||
feature_map = output_dict["feature_map"]
|
||||
feed_list = [img.name]
|
||||
task = hub.ImageClassifierTask(
|
||||
data_reader=data_reader,
|
||||
feed_list=feed_list,
|
||||
feature=feature_map,
|
||||
num_classes=dataset.num_labels,
|
||||
config=config)
|
||||
run_states = task.finetune_and_eval()
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from pandas import Series,DataFrame
|
||||
%matplotlib inline
|
||||
import os
|
||||
dirs=os.listdir('car_datasets/test')
|
||||
num=0
|
||||
for i in os.listdir('car_datasets/test'):
|
||||
m='car_datasets/test/'+i
|
||||
dirs[num]=m
|
||||
num+=1
|
||||
s=0
|
||||
b=0
|
||||
a=os.listdir('car_datasets/test')
|
||||
for i in a:
|
||||
b+=len(os.listdir('car_datasets/test/'+i))
|
||||
data=[]
|
||||
for i in range(b):
|
||||
data.append('w')
|
||||
for i in dirs:
|
||||
for j in os.listdir(i):
|
||||
n=i+'/'+j
|
||||
data[s]=n
|
||||
s+=1
|
||||
label_map = dataset.label_dict()
|
||||
index = 0
|
||||
run_states = task.predict(data=data)
|
||||
results = [run_state.run_results for run_state in run_states]
|
||||
for batch_result in results:
|
||||
batch_result = np.argmax(batch_result, axis=2)[0]
|
||||
for result in batch_result:
|
||||
index += 1
|
||||
result = label_map[result]
|
||||
print("input %i is %s, and the predict result is ( %s )" %
|
||||
(index, data[index - 1], result))
|
Loading…
Reference in new issue