|
|
|
@ -0,0 +1,92 @@
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
"""功能一:"""
|
|
|
|
|
#1图像转换为灰度图像
|
|
|
|
|
def grayscale(image):
|
|
|
|
|
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
#1垂直镜像
|
|
|
|
|
def mirror_vertical(image):
|
|
|
|
|
vertical = cv2.flip(image,0,dst=None)
|
|
|
|
|
return vertical
|
|
|
|
|
|
|
|
|
|
#1图像放缩(!)
|
|
|
|
|
def change_size(image):
|
|
|
|
|
change_image = cv2.resize(image, (256, 256))
|
|
|
|
|
return change_image
|
|
|
|
|
|
|
|
|
|
#1旋转画布
|
|
|
|
|
def rotate(image):
|
|
|
|
|
rows, cols, depth = image.shape
|
|
|
|
|
rotation = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1)
|
|
|
|
|
return rotation
|
|
|
|
|
|
|
|
|
|
#1水平镜像
|
|
|
|
|
def mirror_horizontal(image):
|
|
|
|
|
horizontal = cv2.flip(image,1,dst=None)
|
|
|
|
|
return horizontal
|
|
|
|
|
|
|
|
|
|
#1保持横纵比例
|
|
|
|
|
def keep_shape(image):
|
|
|
|
|
# 获取图像的高度和宽度
|
|
|
|
|
height, width = image.shape[:2]
|
|
|
|
|
# 计算裁剪区域crop
|
|
|
|
|
target_aspect_ratio = 16 / 9
|
|
|
|
|
if width / height > target_aspect_ratio:
|
|
|
|
|
new_width = int(height * target_aspect_ratio)
|
|
|
|
|
offset = (width - new_width) // 2
|
|
|
|
|
crop = image[:, offset:offset + new_width]
|
|
|
|
|
else:
|
|
|
|
|
new_height = int(width / target_aspect_ratio)
|
|
|
|
|
offset = (height - new_height) // 2
|
|
|
|
|
crop = image[offset:offset + new_height, :]
|
|
|
|
|
return crop
|
|
|
|
|
|
|
|
|
|
#1还原原始图像
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""功能二"""
|
|
|
|
|
#2高斯滤波模糊去噪
|
|
|
|
|
def apply_blur(image):
|
|
|
|
|
blurred = cv2.GaussianBlur(image, (5, 5), 0)
|
|
|
|
|
return blurred
|
|
|
|
|
|
|
|
|
|
#2肤色处理
|
|
|
|
|
def skin(image):
|
|
|
|
|
# 将图像从BGR转换到HSV
|
|
|
|
|
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
|
|
|
|
# 定义肤色的HSV范围
|
|
|
|
|
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
|
|
|
|
|
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
|
|
|
|
|
# 创建掩码
|
|
|
|
|
mask = cv2.inRange(hsv_image, lower_skin, upper_skin)
|
|
|
|
|
# 应用掩码到原始图像
|
|
|
|
|
skin_image = cv2.bitwise_and(image, image, mask=mask)
|
|
|
|
|
return skin_image
|
|
|
|
|
|
|
|
|
|
#2腐蚀
|
|
|
|
|
def center_erosion(image):
|
|
|
|
|
erode = cv2.imread(image, cv2.IMREAD_UNCHANGED)
|
|
|
|
|
# 使用一个5x5的交叉型结构元(核心在几何中心)对二值图片src进行腐蚀
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5));
|
|
|
|
|
erosion = cv2.erode(erode,kernel)
|
|
|
|
|
return erosion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""功能三"""
|
|
|
|
|
#边缘检测
|
|
|
|
|
def detect_edges(image):
|
|
|
|
|
"""使用Canny边缘检测算法检测图像的边缘"""
|
|
|
|
|
edges = cv2.Canny(image, 100, 200)
|
|
|
|
|
return edges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 更多自定义处理方法...
|
|
|
|
|
|
|
|
|
|
#识别边缘
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|