parent
65d963325e
commit
70395a74c0
@ -0,0 +1,33 @@
|
|||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
from 口罩检测.util import train_parameters
|
||||||
|
from 口罩检测.VGGNet import VGGNet
|
||||||
|
def load_image(img_path):
|
||||||
|
img =Image.open(img_path)
|
||||||
|
if img.mode !='RGB':
|
||||||
|
img = img.covert('RGB')
|
||||||
|
img = img.resize((244,244),Image.BILINEAR)
|
||||||
|
img = np.array(img).astype('float32')
|
||||||
|
img = img.transpose((2,0,1))
|
||||||
|
img = img/255.0
|
||||||
|
return img
|
||||||
|
|
||||||
|
label_dict = train_parameters['label_dict']
|
||||||
|
|
||||||
|
#模型预测
|
||||||
|
with fluid.dygraph.guard():
|
||||||
|
model,_ = fluid.dygraph.load_dygraph('vgg')
|
||||||
|
vgg = VGGNet()
|
||||||
|
vgg.eval()
|
||||||
|
infer_path='./unmask.jpg'
|
||||||
|
img = Image.open(infer_path)
|
||||||
|
|
||||||
|
x_data = load_image(infer_path)
|
||||||
|
x_data = np.array(x_data)
|
||||||
|
x_data = x_data[np.newaxis,:,:,:]
|
||||||
|
x_data= fluid.dygraph.to_variable(x_data)
|
||||||
|
out = vgg(x_data)
|
||||||
|
result = np.argmax(out.numpy())
|
||||||
|
print(label_dict)
|
||||||
|
print("被预测的图片为:{}".format(label_dict[str(result)]))
|
Loading…
Reference in new issue