Compare commits
1 Commits
Author | SHA1 | Date |
---|---|---|
|
7b4bf07cc3 | 2 years ago |
@ -1,2 +1,70 @@
|
|||||||
# BP_system
|
# BP_system
|
||||||
|
// Step 3: Sigmoid Function
|
||||||
|
double sigmoid(double x) {
|
||||||
|
return 1 / (1 + exp(-x));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 4: Initialize Hidden Layer Nodes
|
||||||
|
void init() {
|
||||||
|
// Assuming you have predefined constants for the number of nodes and other parameters
|
||||||
|
const int num_hidden_nodes = 10; // Adjust according to your network architecture
|
||||||
|
|
||||||
|
// Initialize hidden layer nodes
|
||||||
|
for (int i = 0; i < num_hidden_nodes; i++) {
|
||||||
|
// Allocate memory for weights and weight corrections
|
||||||
|
double* weights = (double*)malloc(sizeof(double) * num_input_nodes); // Assuming num_input_nodes is defined
|
||||||
|
double* weight_corrections = (double*)malloc(sizeof(double) * num_input_nodes);
|
||||||
|
|
||||||
|
// Initialize weights with random values
|
||||||
|
for (int j = 0; j < num_input_nodes; j++) {
|
||||||
|
weights[j] = (double)rand() / RAND_MAX * 2.0 - 1.0;
|
||||||
|
weight_corrections[j] = 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Initialize bias and bias correction
|
||||||
|
double bias = (double)rand() / RAND_MAX * 2.0 - 1.0;
|
||||||
|
double bias_correction = 0.0;
|
||||||
|
|
||||||
|
// Store these values in your data structure for the hidden layer
|
||||||
|
// This is where you need to have a data structure to hold your network parameters
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 5: Forward Propagation from Hidden Layer to Output Layer
|
||||||
|
void forward_propagation() {
|
||||||
|
// Assuming you have predefined constants for the number of nodes and other parameters
|
||||||
|
const int num_output_nodes = 5; // Adjust according to your network architecture
|
||||||
|
|
||||||
|
// Assuming you have initialized your hidden layer and stored it in some data structure
|
||||||
|
|
||||||
|
// Loop through each output node
|
||||||
|
for (int i = 0; i < num_output_nodes; i++) {
|
||||||
|
// Initialize sum
|
||||||
|
double sum = 0.0;
|
||||||
|
|
||||||
|
// Loop through each hidden layer node
|
||||||
|
for (int j = 0; j < num_hidden_nodes; j++) {
|
||||||
|
// Calculate the weighted sum of inputs
|
||||||
|
sum += hidden_layer[j].value * hidden_layer[j].weights[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Subtract the bias
|
||||||
|
sum -= output_bias[i];
|
||||||
|
|
||||||
|
// Apply sigmoid activation
|
||||||
|
output_layer[i].value = sigmoid(sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 6: Main Function
|
||||||
|
int main() {
|
||||||
|
// Initialize your neural network
|
||||||
|
init();
|
||||||
|
|
||||||
|
// Perform forward propagation
|
||||||
|
forward_propagation();
|
||||||
|
|
||||||
|
// Rest of your code...
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in new issue