Compare commits

...

1 Commits

Author SHA1 Message Date
pvk3wty2e 7b4bf07cc3 Update README.md
2 years ago

@ -1,2 +1,70 @@
# BP_system
// Step 3: Sigmoid Function
double sigmoid(double x) {
return 1 / (1 + exp(-x));
}
// Step 4: Initialize Hidden Layer Nodes
void init() {
// Assuming you have predefined constants for the number of nodes and other parameters
const int num_hidden_nodes = 10; // Adjust according to your network architecture
// Initialize hidden layer nodes
for (int i = 0; i < num_hidden_nodes; i++) {
// Allocate memory for weights and weight corrections
double* weights = (double*)malloc(sizeof(double) * num_input_nodes); // Assuming num_input_nodes is defined
double* weight_corrections = (double*)malloc(sizeof(double) * num_input_nodes);
// Initialize weights with random values
for (int j = 0; j < num_input_nodes; j++) {
weights[j] = (double)rand() / RAND_MAX * 2.0 - 1.0;
weight_corrections[j] = 0.0;
}
// Initialize bias and bias correction
double bias = (double)rand() / RAND_MAX * 2.0 - 1.0;
double bias_correction = 0.0;
// Store these values in your data structure for the hidden layer
// This is where you need to have a data structure to hold your network parameters
}
}
// Step 5: Forward Propagation from Hidden Layer to Output Layer
void forward_propagation() {
// Assuming you have predefined constants for the number of nodes and other parameters
const int num_output_nodes = 5; // Adjust according to your network architecture
// Assuming you have initialized your hidden layer and stored it in some data structure
// Loop through each output node
for (int i = 0; i < num_output_nodes; i++) {
// Initialize sum
double sum = 0.0;
// Loop through each hidden layer node
for (int j = 0; j < num_hidden_nodes; j++) {
// Calculate the weighted sum of inputs
sum += hidden_layer[j].value * hidden_layer[j].weights[i];
}
// Subtract the bias
sum -= output_bias[i];
// Apply sigmoid activation
output_layer[i].value = sigmoid(sum);
}
}
// Step 6: Main Function
int main() {
// Initialize your neural network
init();
// Perform forward propagation
forward_propagation();
// Rest of your code...
return 0;
}

Loading…
Cancel
Save