Created using Colaboratory

pull/1/head
Glenn Jocher 5 years ago
parent 9d7c7784f2
commit 1b1681bac9

@ -74,7 +74,7 @@
"clear_output()\n", "clear_output()\n",
"print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))" "print('Setup complete. Using torch %s %s' % (torch.__version__, torch.cuda.get_device_properties(0) if torch.cuda.is_available() else 'CPU'))"
], ],
"execution_count": 1, "execution_count": null,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
@ -212,7 +212,7 @@
"gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') # val2017 dataset\n", "gdrive_download('1Y6Kou6kEB0ZEMCCpJSKStCor4KAReE43','coco2017val.zip') # val2017 dataset\n",
"!mv ./coco ../ # move folder alongside /yolov5" "!mv ./coco ../ # move folder alongside /yolov5"
], ],
"execution_count": 10, "execution_count": null,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
@ -238,7 +238,7 @@
"# Run YOLOv5x on COCO val2017\n", "# Run YOLOv5x on COCO val2017\n",
"!python test.py --weights yolov5x.pt --data coco.yaml --img 672" "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
], ],
"execution_count": 15, "execution_count": null,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
@ -352,7 +352,7 @@
"gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') # coco128 dataset\n", "gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip') # coco128 dataset\n",
"!mv ./coco128 ../ # move folder alongside /yolov5" "!mv ./coco128 ../ # move folder alongside /yolov5"
], ],
"execution_count": 16, "execution_count": null,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
@ -405,7 +405,7 @@
"# Train YOLOv5s on coco128 for 3 epochs\n", "# Train YOLOv5s on coco128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cache" "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --nosave --cache"
], ],
"execution_count": 24, "execution_count": null,
"outputs": [ "outputs": [
{ {
"output_type": "stream", "output_type": "stream",
@ -622,7 +622,7 @@
"colab_type": "text" "colab_type": "text"
}, },
"source": [ "source": [
"Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (orange), and from pretrained `yolov5s.pt` (blue)." "Training losses and performance metrics are saved to Tensorboard and also to a `runs/exp0/results.txt` logfile. `results.txt` is plotted as `results.png` after training completes. Partially completed `results.txt` files can be plotted with `from utils.utils import plot_results; plot_results()`. Here we show YOLOv5s trained on coco128 to 300 epochs, starting from scratch (blue), and from pretrained `yolov5s.pt` (orange)."
] ]
}, },
{ {
@ -639,7 +639,7 @@
"source": [ "source": [
"from utils.utils import plot_results; plot_results() # plot results.txt files as results.png" "from utils.utils import plot_results; plot_results() # plot results.txt files as results.png"
], ],
"execution_count": 29, "execution_count": null,
"outputs": [ "outputs": [
{ {
"output_type": "execute_result", "output_type": "execute_result",
@ -701,7 +701,7 @@
"!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5\n", "!rm -rf yolov5 && git clone https://github.com/ultralytics/yolov5\n",
"%cd yolov5" "%cd yolov5"
], ],
"execution_count": 9, "execution_count": null,
"outputs": [] "outputs": []
}, },
{ {

Loading…
Cancel
Save