parent
c840fa81c9
commit
00bed3325a
Binary file not shown.
@ -1,45 +1,57 @@
|
|||||||
from keras.preprocessing import sequence
|
import pandas as pd
|
||||||
from keras.models import Sequential
|
from sortedcontainers import SortedSet
|
||||||
from keras.layers import Dense, Embedding
|
import numpy as np
|
||||||
from keras.layers import LSTM
|
from sklearn.model_selection import train_test_split
|
||||||
from keras.datasets import imdb
|
from keras.layers import Dense, Embedding, Input, Flatten
|
||||||
|
from keras.layers import LSTM, GRU, Dropout
|
||||||
max_features = 20000
|
from keras.models import Model
|
||||||
# cut texts after this number of words (among top max_features most common words)
|
import keras
|
||||||
maxlen = 80
|
from keras.utils import plot_model
|
||||||
batch_size = 32
|
import utils
|
||||||
|
import time
|
||||||
print('Loading data...')
|
|
||||||
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
|
|
||||||
print(len(x_train), 'train sequences')
|
def build_model(want_answer_size, infact_answer_size):
|
||||||
print(len(x_test), 'test sequences')
|
inputs_want_answer = Input(shape=(want_answer_size, ), name='want_answer_input')
|
||||||
|
inputs_infact_answer = Input(shape=(infact_answer_size, ), name='infact_answer_input')
|
||||||
print('Pad sequences (samples x time)')
|
x_1 = Embedding(want_answer_size, 128, name='want_answer_embedding', embeddings_initializer='he_normal', embeddings_regularizer=keras.regularizers.l2(0.01))(inputs_want_answer)
|
||||||
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
|
x_2 = Embedding(infact_answer_size, 128, name='infact_answer_embedding', embeddings_initializer='he_normal', embeddings_regularizer=keras.regularizers.l2(0.01))(inputs_infact_answer)
|
||||||
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
|
x_1 = GRU(128, dropout=0.4, return_sequences=True, recurrent_initializer='he_normal', recurrent_regularizer=keras.regularizers.l2(0.01))(x_1)
|
||||||
print('x_train shape:', x_train.shape)
|
x_2 = GRU(128, dropout=0.4, return_sequences=True, recurrent_initializer='he_normal', recurrent_regularizer=keras.regularizers.l2(0.01))(x_2)
|
||||||
print('x_test shape:', x_test.shape)
|
x = keras.layers.concatenate([x_1, x_2])
|
||||||
|
x = Flatten()(x)
|
||||||
|
x = Dropout(0.3)(x)
|
||||||
print('Build model...')
|
x = Dense(64, activation='relu')(x)
|
||||||
model = Sequential()
|
predictions = Dense(2, activation='softmax')(x)
|
||||||
model.add(Embedding(max_features, 128))
|
model = Model(inputs=[inputs_want_answer, inputs_infact_answer], outputs=predictions)
|
||||||
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
|
return model
|
||||||
model.add(Dense(1, activation='sigmoid'))
|
|
||||||
|
|
||||||
# try using different optimizers and different optimizer configs
|
if __name__ == '__main__':
|
||||||
model.compile(loss='binary_crossentropy',
|
df = pd.read_excel('./预期输出与实际输出数据表.xlsx')
|
||||||
optimizer='adam',
|
want_answer_corpus, infact_answer_corpus = utils.build_corpus(df)
|
||||||
|
onehot = utils.label2onehot(df['是否正确'])
|
||||||
|
x_train_1, x_test_1, y_train, y_test = train_test_split(want_answer_corpus, onehot, random_state=2333)
|
||||||
|
x_train_2, x_test_2, _, _ = train_test_split(infact_answer_corpus, onehot, random_state=2333)
|
||||||
|
|
||||||
|
want_answer_corpus_size = len(want_answer_corpus[0])
|
||||||
|
infact_answer_corpus_size = len(infact_answer_corpus[0])
|
||||||
|
|
||||||
|
model = build_model(want_answer_corpus_size, infact_answer_corpus_size)
|
||||||
|
|
||||||
|
# plot_model(model, to_file='model.png')
|
||||||
|
|
||||||
|
model.compile(loss='categorical_crossentropy',
|
||||||
|
optimizer=keras.optimizers.Adam(lr=1e-4),
|
||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
print(model.summary())
|
|
||||||
|
|
||||||
print('Train...')
|
print('Train...')
|
||||||
model.fit(x_train, y_train,
|
model.fit([x_train_1, x_train_2], y_train,
|
||||||
batch_size=batch_size,
|
batch_size=16,
|
||||||
epochs=15,
|
epochs=50)
|
||||||
validation_data=(x_test, y_test))
|
|
||||||
score, acc = model.evaluate(x_test, y_test,
|
score, acc = model.evaluate([x_test_1, x_test_2], y_test,
|
||||||
batch_size=batch_size)
|
batch_size=8, verbose=0)
|
||||||
|
|
||||||
print('Test score:', score)
|
print('Test score:', score)
|
||||||
print('Test accuracy:', acc)
|
print('Test accuracy:', acc)
|
Binary file not shown.
Loading…
Reference in new issue