master
aolingwen 6 years ago
parent c840fa81c9
commit 00bed3325a

Binary file not shown.

@ -1,45 +1,57 @@
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Embedding
from keras.layers import LSTM
from keras.datasets import imdb
max_features = 20000
# cut texts after this number of words (among top max_features most common words)
maxlen = 80
batch_size = 32
print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
print('Build model...')
model = Sequential()
model.add(Embedding(max_features, 128))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
import pandas as pd
from sortedcontainers import SortedSet
import numpy as np
from sklearn.model_selection import train_test_split
from keras.layers import Dense, Embedding, Input, Flatten
from keras.layers import LSTM, GRU, Dropout
from keras.models import Model
import keras
from keras.utils import plot_model
import utils
import time
def build_model(want_answer_size, infact_answer_size):
inputs_want_answer = Input(shape=(want_answer_size, ), name='want_answer_input')
inputs_infact_answer = Input(shape=(infact_answer_size, ), name='infact_answer_input')
x_1 = Embedding(want_answer_size, 128, name='want_answer_embedding', embeddings_initializer='he_normal', embeddings_regularizer=keras.regularizers.l2(0.01))(inputs_want_answer)
x_2 = Embedding(infact_answer_size, 128, name='infact_answer_embedding', embeddings_initializer='he_normal', embeddings_regularizer=keras.regularizers.l2(0.01))(inputs_infact_answer)
x_1 = GRU(128, dropout=0.4, return_sequences=True, recurrent_initializer='he_normal', recurrent_regularizer=keras.regularizers.l2(0.01))(x_1)
x_2 = GRU(128, dropout=0.4, return_sequences=True, recurrent_initializer='he_normal', recurrent_regularizer=keras.regularizers.l2(0.01))(x_2)
x = keras.layers.concatenate([x_1, x_2])
x = Flatten()(x)
x = Dropout(0.3)(x)
x = Dense(64, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=[inputs_want_answer, inputs_infact_answer], outputs=predictions)
return model
if __name__ == '__main__':
df = pd.read_excel('./预期输出与实际输出数据表.xlsx')
want_answer_corpus, infact_answer_corpus = utils.build_corpus(df)
onehot = utils.label2onehot(df['是否正确'])
x_train_1, x_test_1, y_train, y_test = train_test_split(want_answer_corpus, onehot, random_state=2333)
x_train_2, x_test_2, _, _ = train_test_split(infact_answer_corpus, onehot, random_state=2333)
want_answer_corpus_size = len(want_answer_corpus[0])
infact_answer_corpus_size = len(infact_answer_corpus[0])
model = build_model(want_answer_corpus_size, infact_answer_corpus_size)
# plot_model(model, to_file='model.png')
model.compile(loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(lr=1e-4),
metrics=['accuracy'])
print(model.summary())
print('Train...')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=15,
validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,
batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
print('Train...')
model.fit([x_train_1, x_train_2], y_train,
batch_size=16,
epochs=50)
score, acc = model.evaluate([x_test_1, x_test_2], y_test,
batch_size=8, verbose=0)
print('Test score:', score)
print('Test accuracy:', acc)

@ -114,38 +114,7 @@ def label2onehot(label):
if __name__ == '__main__':
df = pd.read_excel('./预期输出与实际输出数据表.xlsx')
want_answer_corpus, infact_answer_corpus = build_corpus(df)
onehot = label2onehot(df['是否正确'])
x_train_1, x_test_1, y_train, y_test = train_test_split(want_answer_corpus, onehot, random_state=2333)
x_train_2, x_test_2, _, _ = train_test_split(infact_answer_corpus, onehot, random_state=2333)
inputs_want_answer = Input(shape=(len(want_answer_corpus[0]), ), name='want_answer_input')
inputs_infact_answer = Input(shape=(len(infact_answer_corpus[0]), ), name='infact_answer_input')
x_1 = Embedding(len(want_answer_corpus[0]), 64, name='want_answer_embedding')(inputs_want_answer)
x_2 = Embedding(len(infact_answer_corpus[0]), 64, name='infact_answer_embedding')(inputs_infact_answer)
x_1 = GRU(64, dropout=0.5, return_sequences=0.2)(x_1)
x_2 = GRU(64, dropout=0.5, return_sequences=0.2)(x_2)
x = keras.layers.concatenate([x_1, x_2])
x = Flatten()(x)
x = Dense(64, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=[inputs_want_answer, inputs_infact_answer], outputs=predictions)
# plot_model(model, to_file='model.png')
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print('Train...')
model.fit([x_train_1, x_train_2], y_train,
batch_size=16,
epochs=60)
score, acc = model.evaluate([x_test_1, x_test_2], y_test,
batch_size=8)
print('Test score:', score)
print('Test accuracy:', acc)
pass

Loading…
Cancel
Save