You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
615 lines
35 KiB
615 lines
35 KiB
5 years ago
|
|
||
|
<!DOCTYPE HTML>
|
||
|
<html lang="" >
|
||
|
<head>
|
||
|
<meta charset="UTF-8">
|
||
|
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
|
||
|
<title>物以类聚人以群分-kMeans · GitBook</title>
|
||
|
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
||
|
<meta name="description" content="">
|
||
|
<meta name="generator" content="GitBook 3.2.3">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<link rel="stylesheet" href="gitbook/style.css">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-katex/katex.min.css">
|
||
|
|
||
|
|
||
|
|
||
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-highlight/website.css">
|
||
|
|
||
|
|
||
|
|
||
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-search/search.css">
|
||
|
|
||
|
|
||
|
|
||
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-fontsettings/website.css">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<meta name="HandheldFriendly" content="true"/>
|
||
|
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
|
||
|
<meta name="apple-mobile-web-app-capable" content="yes">
|
||
|
<meta name="apple-mobile-web-app-status-bar-style" content="black">
|
||
|
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="gitbook/images/apple-touch-icon-precomposed-152.png">
|
||
|
<link rel="shortcut icon" href="gitbook/images/favicon.ico" type="image/x-icon">
|
||
|
|
||
|
|
||
|
<link rel="next" href="AGNES.html" />
|
||
|
|
||
|
|
||
|
<link rel="prev" href="random_forest.html" />
|
||
|
|
||
|
|
||
|
</head>
|
||
|
<body>
|
||
|
|
||
|
<div class="book">
|
||
|
<div class="book-summary">
|
||
|
|
||
|
|
||
|
<div id="book-search-input" role="search">
|
||
|
<input type="text" placeholder="Type to search" />
|
||
|
</div>
|
||
|
|
||
|
|
||
|
<nav role="navigation">
|
||
|
|
||
|
|
||
|
|
||
|
<ul class="summary">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<li class="chapter " data-level="1.1" data-path="./">
|
||
|
|
||
|
<a href="./">
|
||
|
|
||
|
|
||
|
简介
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.2" data-path="machine_learning.html">
|
||
|
|
||
|
<a href="machine_learning.html">
|
||
|
|
||
|
|
||
|
机器学习概述
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.3" data-path="algorithm.html">
|
||
|
|
||
|
<a href="algorithm.html">
|
||
|
|
||
|
|
||
|
常见机器学习算法
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
<ul class="articles">
|
||
|
|
||
|
|
||
|
<li class="chapter " data-level="1.3.1" data-path="kNN.html">
|
||
|
|
||
|
<a href="kNN.html">
|
||
|
|
||
|
|
||
|
近朱者赤近墨者黑-kNN
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.3.2" data-path="linear_regression.html">
|
||
|
|
||
|
<a href="linear_regression.html">
|
||
|
|
||
|
|
||
|
最简单的回归算法-线性回归
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.3.3" data-path="logistic_regression.html">
|
||
|
|
||
|
<a href="logistic_regression.html">
|
||
|
|
||
|
|
||
|
使用回归的思想进行分类-逻辑回归
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.3.4" data-path="decision_tree.html">
|
||
|
|
||
|
<a href="decision_tree.html">
|
||
|
|
||
|
|
||
|
最接近人类思维的算法-决策树
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.3.5" data-path="random_forest.html">
|
||
|
|
||
|
<a href="random_forest.html">
|
||
|
|
||
|
|
||
|
群众的力量是伟大的-随机森林
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter active" data-level="1.3.6" data-path="kMeans.html">
|
||
|
|
||
|
<a href="kMeans.html">
|
||
|
|
||
|
|
||
|
物以类聚人以群分-kMeans
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.3.7" data-path="AGNES.html">
|
||
|
|
||
|
<a href="AGNES.html">
|
||
|
|
||
|
|
||
|
以距离为尺-AGNES
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
|
||
|
</ul>
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.4" data-path="metrics.html">
|
||
|
|
||
|
<a href="metrics.html">
|
||
|
|
||
|
|
||
|
模型评估指标
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
<ul class="articles">
|
||
|
|
||
|
|
||
|
<li class="chapter " data-level="1.4.1" data-path="classification_metrics.html">
|
||
|
|
||
|
<a href="classification_metrics.html">
|
||
|
|
||
|
|
||
|
分类性能评估指标
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.4.2" data-path="regression_metrics.html">
|
||
|
|
||
|
<a href="regression_metrics.html">
|
||
|
|
||
|
|
||
|
回归性能评估指标
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.4.3" data-path="cluster_metrics.html">
|
||
|
|
||
|
<a href="cluster_metrics.html">
|
||
|
|
||
|
|
||
|
聚类性能评估指标
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
|
||
|
</ul>
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.5" data-path="sklearn.html">
|
||
|
|
||
|
<a href="sklearn.html">
|
||
|
|
||
|
|
||
|
使用sklearn进行机器学习
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6" >
|
||
|
|
||
|
<span>
|
||
|
|
||
|
|
||
|
综合实战案例
|
||
|
|
||
|
</span>
|
||
|
|
||
|
|
||
|
|
||
|
<ul class="articles">
|
||
|
|
||
|
|
||
|
<li class="chapter " data-level="1.6.1" >
|
||
|
|
||
|
<span>
|
||
|
|
||
|
|
||
|
泰坦尼克生还预测
|
||
|
|
||
|
</span>
|
||
|
|
||
|
|
||
|
|
||
|
<ul class="articles">
|
||
|
|
||
|
|
||
|
<li class="chapter " data-level="1.6.1.1" data-path="titanic/introduction.html">
|
||
|
|
||
|
<a href="titanic/introduction.html">
|
||
|
|
||
|
|
||
|
简介
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.1.2" data-path="titanic/EDA.html">
|
||
|
|
||
|
<a href="titanic/EDA.html">
|
||
|
|
||
|
|
||
|
探索性数据分析(EDA)
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.1.3" data-path="titanic/feature engerning.html">
|
||
|
|
||
|
<a href="titanic/feature engerning.html">
|
||
|
|
||
|
|
||
|
特征工程
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.1.4" data-path="titanic/fit and predict.html">
|
||
|
|
||
|
<a href="titanic/fit and predict.html">
|
||
|
|
||
|
|
||
|
构建模型进行预测
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.1.5" data-path="titanic/tuning.html">
|
||
|
|
||
|
<a href="titanic/tuning.html">
|
||
|
|
||
|
|
||
|
调参
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
|
||
|
</ul>
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.2" >
|
||
|
|
||
|
<span>
|
||
|
|
||
|
|
||
|
使用强化学习玩乒乓球游戏
|
||
|
|
||
|
</span>
|
||
|
|
||
|
|
||
|
|
||
|
<ul class="articles">
|
||
|
|
||
|
|
||
|
<li class="chapter " data-level="1.6.2.1" data-path="pingpong/what is reinforce learning.html">
|
||
|
|
||
|
<a href="pingpong/what is reinforce learning.html">
|
||
|
|
||
|
|
||
|
什么是强化学习
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.2.2" data-path="pingpong/Policy Gradient.html">
|
||
|
|
||
|
<a href="pingpong/Policy Gradient.html">
|
||
|
|
||
|
|
||
|
Policy Gradient原理
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.6.2.3" data-path="pingpong/coding.html">
|
||
|
|
||
|
<a href="pingpong/coding.html">
|
||
|
|
||
|
|
||
|
使用Policy Gradient玩乒乓球游戏
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
|
||
|
</ul>
|
||
|
|
||
|
</li>
|
||
|
|
||
|
|
||
|
</ul>
|
||
|
|
||
|
</li>
|
||
|
|
||
|
<li class="chapter " data-level="1.7" data-path="recommand.html">
|
||
|
|
||
|
<a href="recommand.html">
|
||
|
|
||
|
|
||
|
实训推荐
|
||
|
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</li>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<li class="divider"></li>
|
||
|
|
||
|
<li>
|
||
|
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
|
||
|
Published with GitBook
|
||
|
</a>
|
||
|
</li>
|
||
|
</ul>
|
||
|
|
||
|
|
||
|
</nav>
|
||
|
|
||
|
|
||
|
</div>
|
||
|
|
||
|
<div class="book-body">
|
||
|
|
||
|
<div class="body-inner">
|
||
|
|
||
|
|
||
|
|
||
|
<div class="book-header" role="navigation">
|
||
|
|
||
|
|
||
|
<!-- Title -->
|
||
|
<h1>
|
||
|
<i class="fa fa-circle-o-notch fa-spin"></i>
|
||
|
<a href="." >物以类聚人以群分-kMeans</a>
|
||
|
</h1>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<div class="page-wrapper" tabindex="-1" role="main">
|
||
|
<div class="page-inner">
|
||
|
|
||
|
<div id="book-search-results">
|
||
|
<div class="search-noresults">
|
||
|
|
||
|
<section class="normal markdown-section">
|
||
|
|
||
|
<h1 id="物以类聚人以群分-k-means">物以类聚人以群分-k Means</h1>
|
||
|
<p><strong>k Means</strong>是属于机器学习里面的非监督学习,通常是大家接触到的第一个聚类算法,其原理非常简单,是一种典型的基于<strong>距离</strong>的聚类算法。<strong>距离</strong>指的是每个样本到质心的距离。那么,这里所说的质心是什么呢?</p>
|
||
|
<p>其实,质心指的是样本每个特征的均值所构成的一个坐标。举个例子:假如有两个数据 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mn>1</mn><mo separator="true">,</mo><mn>1</mn><mo>)</mo></mrow><annotation encoding="application/x-tex">(1,1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle uncramped"><span class="mopen">(</span><span class="mord mathrm">1</span><span class="mpunct">,</span><span class="mord mathrm">1</span><span class="mclose">)</span></span></span></span> 和<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mn>2</mn><mo separator="true">,</mo><mn>2</mn><mo>)</mo></mrow><annotation encoding="application/x-tex">(2,2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle uncramped"><span class="mopen">(</span><span class="mord mathrm">2</span><span class="mpunct">,</span><span class="mord mathrm">2</span><span class="mclose">)</span></span></span></span> 则这两个样本的质心为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mn>1</mn><mi mathvariant="normal">.</mi><mn>5</mn><mo separator="true">,</mo><mn>1</mn><mi mathvariant="normal">.</mi><mn>5</mn><mo>)</mo></mrow><annotation encoding="application/x-tex">(1.5,1.5)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle uncramped"><span class="mopen">(</span><span class="mord mathrm">1</span><span class="mord mathrm">.</span><span class="mord mathrm">5</span><span class="mpunct">,</span><span class="mord mathrm">1</span><span class="mord mathrm">.</span><span class="mord mathrm">5</span><span class="mclose">)</span></span></span></span>。</p>
|
||
|
<p>同样的,如果一份数据有 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base textstyle uncramped"><span class="mord mathit">m</span></span></span></span> 个样本,每个样本有 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base textstyle uncramped"><span class="mord mathit">n</span></span></span></span> 个特征,用 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>x</mi><mi>i</mi><mi>j</mi></msubsup></mrow><annotation encoding="application/x-tex">x_i^j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.942572em;"></span><span class="strut bottom" style="height:1.219436em;vertical-align:-0.276864em;"></span><span class="base textstyle uncramped"><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist"><span style="top:0.276864em;margin-left:0em;margin-right:0.05em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle cramped mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-0.480908em;margin-right:0.05em;"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span><span class="reset-textstyle scriptstyle uncramped mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span><span class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span style="font-size:0em;">​</span></span>​</span></span></span></span></span></span></span> 来表示第 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.65952em;"></span><span class="strut bottom" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="base textstyle uncramped"><span class="mord mathit" style="margin-right:0.05724em;">j</span></span></span></span> 个样本的第 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.65952em;"></span><span class="strut bottom" style="height:0.65952em;vertical-align:0em;"></span><span class="base textstyle uncramped"><span class="mord mathit">i</span></span></span></span> 个特征,则它们的质心为:<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>m</mi><mi>a</mi><mi>s</mi><mi>s</mi><mo>=</mo><mo>(</mo><mfrac><mrow><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></msubsup><msubsup><mi>x</mi><mn>1</mn><mi>j</mi></msubsup></mrow><mrow><mi>m</mi></mrow></mfrac><mo separator="true">,</mo><mfrac><mrow><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></msubsup><msubsup><mi>x</mi><mn>2</mn><mi>j</mi></msubsup></mrow><mrow><mi>m</mi></mrow></mfrac><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi
|
||
|
<p>知道什么是质心后,就可以看看<strong>k Means算法</strong>的流程了。</p>
|
||
|
<h2 id="k-means算法流程">k Means算法流程</h2>
|
||
|
<p>使用<strong>k Means</strong>来聚类时需要首先定义参数<strong>k</strong>,<strong>k</strong>的意思是我想将数据聚成几个类别。假设<strong>k=3</strong>,就是将数据划分成<strong>3</strong>个类别。接下来就可以开始<strong>k Means</strong>算法的流程了,流程如下:</p>
|
||
|
<p><code>1.</code>随机初始<strong>k</strong>个样本,作为类别中心。
|
||
|
<code>2.</code>对每个样本将其标记为距离类别中心最近的类别。
|
||
|
<code>3.</code>将每个类别的质心更新为新的类别中心。
|
||
|
<code>4.</code>重复步骤<code>2</code>、<code>3</code>,直到类别中心的变化小于阈值。</p>
|
||
|
<p>过程示意图如下(其中 X 表示类别的中心,数据点的颜色代表不同的类别):</p>
|
||
|
<p><img src="img/29.gif" alt=""></p>
|
||
|
|
||
|
|
||
|
</section>
|
||
|
|
||
|
</div>
|
||
|
<div class="search-results">
|
||
|
<div class="has-results">
|
||
|
|
||
|
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
|
||
|
<ul class="search-results-list"></ul>
|
||
|
|
||
|
</div>
|
||
|
<div class="no-results">
|
||
|
|
||
|
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
|
||
|
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
|
||
|
</div>
|
||
|
</div>
|
||
|
|
||
|
</div>
|
||
|
|
||
|
|
||
|
|
||
|
<a href="random_forest.html" class="navigation navigation-prev " aria-label="Previous page: 群众的力量是伟大的-随机森林">
|
||
|
<i class="fa fa-angle-left"></i>
|
||
|
</a>
|
||
|
|
||
|
|
||
|
<a href="AGNES.html" class="navigation navigation-next " aria-label="Next page: 以距离为尺-AGNES">
|
||
|
<i class="fa fa-angle-right"></i>
|
||
|
</a>
|
||
|
|
||
|
|
||
|
|
||
|
</div>
|
||
|
|
||
|
<script>
|
||
|
var gitbook = gitbook || [];
|
||
|
gitbook.push(function() {
|
||
|
gitbook.page.hasChanged({"page":{"title":"物以类聚人以群分-kMeans","level":"1.3.6","depth":2,"next":{"title":"以距离为尺-AGNES","level":"1.3.7","depth":2,"path":"AGNES.md","ref":"AGNES.md","articles":[]},"previous":{"title":"群众的力量是伟大的-随机森林","level":"1.3.5","depth":2,"path":"random_forest.md","ref":"random_forest.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["katex"],"pluginsConfig":{"katex":{},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"kMeans.md","mtime":"2019-07-04T06:38:25.317Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-06T07:31:21.537Z"},"basePath":".","book":{"language":""}});
|
||
|
});
|
||
|
</script>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook.js"></script>
|
||
|
<script src="gitbook/theme.js"></script>
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook-plugin-search/search-engine.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook-plugin-search/search.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook-plugin-sharing/buttons.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
<script src="gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
</body>
|
||
|
</html>
|
||
|
|