You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Conception/drake-master/math/discrete_lyapunov_equation.h

82 lines
2.9 KiB

#pragma once
#include <Eigen/Dense>
#include <Eigen/QR>
#include "drake/common/eigen_types.h"
namespace drake {
namespace math {
// TODO(FischerGundlach) Reserve memory and pass it to recursive function
// calls.
/**
* @param A A user defined real square matrix.
* @param Q A user defined real symmetric matrix.
*
* @pre Q is a symmetric matrix.
*
* Computes the unique solution X to the discrete Lyapunov equation: `AᵀXA - X +
* Q = 0`, where A is real and square, and Q is real, symmetric and of equal
* size as A.
* @throws std::exception if A or Q are not square matrices or do not
* have the same size.
*
* Limitations: Given the Eigenvalues of A as λ₁, ..., λₙ, there exists
* a unique solution if and only if λᵢ * λⱼ ≠ 1 ∀ i,j and λᵢ ≠ ±1, ∀ i [1].
* @throws std::exception if the solution is not unique.[3]
*
* There are no further limitations on the eigenvalues of A.
* Further, if |λᵢ|<1, ∀ i, and if Q is
* positive semi-definite, then X is also positive semi-definite [2].
* Therefore, if one searches for a Lyapunov function V(z) = zᵀXz for the stable
* linear system zₙ₊₁ = Azₙ, then the solution of the Lyapunov Equation `AᵀXA -
* X + Q = 0` only returns a valid Lyapunov function if Q is positive
* semi-definite.
*
* The implementation is based on SLICOT routine SB03MD [2]. Note the
* transformation Q = -C. The complexity of this routine is O(n³).
* If A is larger than 2-by-2, then a Schur factorization is performed.
* @throws std::exception if Schur factorization fails.
*
* A tolerance of ε is used to check if a double variable is equal to zero,
* where the default value for ε is 1e-10. It has been used to check (1) if λᵢ =
* ±1 ∀ i; (2) if λᵢ * λⱼ = 1, i ≠ j.
*
* [1] Barraud, A.Y., "A numerical algorithm to solve AᵀXA - X = Q," IEEE®
* Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
*
* [2] http://slicot.org/objects/software/shared/doc/SB03MD.html
*
* [3] https://www.mathworks.com/help/control/ref/dlyap.html
*
*/
Eigen::MatrixXd RealDiscreteLyapunovEquation(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& Q);
namespace internal {
// Subroutines which help special cases. These cases are also called within
// SolveReducedRealContinuousLyapunovFunction.
Vector1d Solve1By1RealDiscreteLyapunovEquation(
const Eigen::Ref<const Vector1d>& A, const Eigen::Ref<const Vector1d>& Q);
Eigen::Matrix2d Solve2By2RealDiscreteLyapunovEquation(
const Eigen::Ref<const Eigen::Matrix2d>& A,
const Eigen::Ref<const Eigen::Matrix2d>& Q);
// If the problem is larger than in size 2-by-2, than it is reduced into a form
// which can be recursively solved by smaller problems.
Eigen::MatrixXd SolveReducedRealDiscreteLyapunovEquation(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& Q);
} // namespace internal
} // namespace math
} // namespace drake