You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Conception/drake-master/systems/controllers/zmp_planner.h

361 lines
10 KiB

#pragma once
#include "drake/common/drake_assert.h"
#include "drake/common/drake_copyable.h"
#include "drake/common/drake_deprecated.h"
#include "drake/common/trajectories/exponential_plus_piecewise_polynomial.h"
#include "drake/common/trajectories/piecewise_polynomial.h"
namespace drake {
namespace systems {
namespace controllers {
/**
Given a desired two dimensional (X and Y) zero-moment point (ZMP) trajectory
parameterized as a piecewise polynomial, an optimal center of mass (CoM)
trajectory is planned using a linear inverted pendulum model (LIPM).
A second order value function (optimal cost-to-go) and a linear policy are
also computed alongside the optimal trajectory.
The system dynamics for the X and Y directions are decoupled, however, we
plan the XY motion together for convenience.
Let \f$ c \f$ be the CoM position, the state of the system, \f$ x \f$,
is \f$ [c; \dot{c}] \f$, the control, \f$ u = \ddot{c} \f$,
and \f$ y \f$ represents the center of pressure (CoP).
For the X direction, the LIPM dynamics is:
\f[
y = c - \frac{z}{g} * u,
\f]
where \f$ g \f$ is the gravity constant and \f$ z \f$ is the CoM height.
\f$ z \f$ is assumed to be constant in LIPM.
The full dynamics can also be written in the matrix form as:
\f[
\dot{x} = A x + B u \\
y = C x + D u
\f]
The one step cost function \f$ L \f$ is defined as:
\f[
L(y, u, t) = (y - y_d(t))^T Q_y (y - y_d(t)) + u^T R u,
\f]
where \f$ Q_y \f$ and \f$ R \f$ are weighting matrices, and \f$ y_d(t) \f$
is the desired ZMP trajectory at time \f$ t \f$.
The value function is defined as
\f[
V(x, t) = \min_{u[t:t_f]} \bar{x}(t_f)^T S \bar{x}(t_f)
+ \int_{t}^{t_f} L(y, u, \tau) d\tau,
\f]
subject to the dynamics, and \f$ t_f \f$ is the last time in the desired
ZMP trajectory, \f$ \bar{x} = [c - y_d(t_f); \dot{c}] \f$,
\f$ S \f$ is the quadratic term from the infinite horizon continuous time
LQR solution solved with the same dynamics and one step cost function.
For this problem, \f$ V \f$ is known to have a quadratic form of:
\f[
V(x, t) = \bar{x}^T V_{xx} \bar{x} + \bar{x}^T V_x(t) + V_0(t),
\f]
and the corresponding optimal control policy, \f$ u^* \f$, is linear
w.r.t. to \f$ x \f$:
\f[
u^*(x, t) = K \bar{x} + u_0(t).
\f]
See the following reference for more details about the algorithm:
[1] R. Tedrake, S. Kuindersma, R. Deits and K. Miura, "A closed-form solution
for real-time ZMP gait generation and feedback stabilization,"
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),
Seoul, 2015, pp. 936-940.
@ingroup planning_trajectory
*/
class ZmpPlanner {
public:
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(ZmpPlanner)
ZmpPlanner() = default;
/**
Implements the algorithm in [1] that computes a nominal CoM trajectory,
and the corresponding second order value function and linear policy.
No other public method should be called until Plan() has been called.
The velocity of the ZMP at the end of `zmp_d` does not need to be zero, but
the user should treat the result with caution, since the resulting nominal
CoM trajectory diverges exponentially quickly beyond the end of `zmp_d`.
@param zmp_d Desired two dimensional ZMP trajectory.
@param x0 Initial CoM state.
@param height CoM height from the ground.
@param gravity Gravity constant, defaults to 9.81
@param Qy Quadratic cost term on ZMP deviation from the desired.
@param R Quadratic cost term on CoM acceleration.
*/
void Plan(const trajectories::PiecewisePolynomial<double>& zmp_d,
const Eigen::Vector4d& x0, double height, double gravity = 9.81,
const Eigen::Matrix2d& Qy = Eigen::Matrix2d::Identity(),
const Eigen::Matrix2d& R = Eigen::Matrix2d::Zero());
/**
Returns true if Plan() has been called.
*/
bool has_planned() const { return planned_; }
/**
Computes the optimal control (CoM acceleration) at `time` given CoM state
`x` using the linear policy.
@param time Current time.
@param x Current state.
@return Optimal CoMdd.
@pre Plan() has already been called.
*/
Eigen::Vector2d ComputeOptimalCoMdd(double time,
const Eigen::Vector4d& x) const;
/**
Converts CoM acceleration to center of pressure (CoP) using
cop = C * x + D * u, which is equivalent to
cop = com - z / g * comdd
Should only be called after Plan is called.
@param x CoM position and velocity
@param u CoM acceleration
@return center of pressure (CoP)
@pre Plan() has already been called.
*/
Eigen::Vector2d comdd_to_cop(const Eigen::Vector4d& x,
const Eigen::Vector2d& u) const {
DRAKE_DEMAND(planned_);
return C_ * x + D_ * u;
}
/**
Getter for A matrix.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 4, 4>& get_A() const {
DRAKE_DEMAND(planned_);
return A_;
}
/**
Getter for B matrix.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 4, 2>& get_B() const {
DRAKE_DEMAND(planned_);
return B_;
}
/**
Getter for C matrix.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 2, 4>& get_C() const {
DRAKE_DEMAND(planned_);
return C_;
}
/**
Getter for D matrix.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 2, 2>& get_D() const {
DRAKE_DEMAND(planned_);
return D_;
}
/**
Getter for Qy matrix.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 2, 2>& get_Qy() const {
DRAKE_DEMAND(planned_);
return Qy_;
}
/**
Getter for R matrix.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 2, 2>& get_R() const {
DRAKE_DEMAND(planned_);
return R_;
}
/**
Returns the desired ZMP evaluated at `time`.
@pre Plan() has already been called.
*/
Eigen::Vector2d get_desired_zmp(double time) const {
DRAKE_DEMAND(planned_);
return zmp_d_.value(time);
}
/**
Returns the nominal CoM position evaluated at `time`.
@pre Plan() has already been called.
*/
Eigen::Vector2d get_nominal_com(double time) const {
DRAKE_DEMAND(planned_);
return com_.value(time);
}
/**
Returns the nominal CoM velocity evaluated at `time`.
@pre Plan() has already been called.
*/
Eigen::Vector2d get_nominal_comd(double time) const {
DRAKE_DEMAND(planned_);
return comd_.value(time);
}
/**
Returns the nominal CoM acceleration evaluated at `time`.
@pre Plan() has already been called.
*/
Eigen::Vector2d get_nominal_comdd(double time) const {
DRAKE_DEMAND(planned_);
return comdd_.value(time);
}
/**
Returns the position of the ZMP at the end of the desired trajectory.
@pre Plan() has already been called.
*/
Eigen::Vector2d get_final_desired_zmp() const {
DRAKE_DEMAND(planned_);
return zmp_d_.value(zmp_d_.end_time());
}
/**
Returns the desired ZMP trajectory.
@pre Plan() has already been called.
*/
const trajectories::PiecewisePolynomial<double>& get_desired_zmp() const {
DRAKE_DEMAND(planned_);
return zmp_d_;
}
/**
Returns the nominal CoM trajectory.
@pre Plan() has already been called.
*/
const trajectories::ExponentialPlusPiecewisePolynomial<double>&
get_nominal_com() const {
DRAKE_DEMAND(planned_);
return com_;
}
/**
Returns the nominal CoM velocity trajectory.
@pre Plan() has already been called.
*/
const trajectories::ExponentialPlusPiecewisePolynomial<double>&
get_nominal_comd() const {
DRAKE_DEMAND(planned_);
return comd_;
}
/**
Returns the nominal CoM acceleration trajectory.
@pre Plan() has already been called.
*/
const trajectories::ExponentialPlusPiecewisePolynomial<double>&
get_nominal_comdd() const {
DRAKE_DEMAND(planned_);
return comdd_;
}
/**
Returns the time invariant second order term (S1 in [1]) of the value
function.
@pre Plan() has already been called.
*/
const Eigen::Matrix<double, 4, 4>& get_Vxx() const {
DRAKE_DEMAND(planned_);
return S1_;
}
/**
Returns the time varying first order term (s2 in [1]) of the value function.
@pre Plan() has already been called.
*/
const trajectories::ExponentialPlusPiecewisePolynomial<double>& get_Vx()
const {
DRAKE_DEMAND(planned_);
return s2_;
}
/**
Returns the time varying first order term (s2 in [1]) of the value function,
evaluated at the given `time`.
@pre Plan() has already been called.
*/
const Eigen::Vector4d get_Vx(double time) const {
DRAKE_DEMAND(planned_);
return s2_.value(time);
}
private:
// Check if the last point of zmp_d is stationary (first and higher
// derivatives are zero).
bool CheckStationaryEndPoint(
const trajectories::PiecewisePolynomial<double>& zmp_d) const;
// Used to test whether the last point of the desired ZMP trajectory is
// stationary or not in CheckStationaryEndPoint. This number is currently
// arbitrarily chosen.
static constexpr double kStationaryThreshold = 1e-8;
// Symbols:
// x: [com; comd]
// y: zmp
// y_tf: last zmp_d
// u: comdd
// x_bar = [x - y_tf, xd]
// y_bar = y - y_tf
// Desired ZMP trajectories.
trajectories::PiecewisePolynomial<double> zmp_d_;
// Nominal CoM, CoMd, and CoMdd trajectories.
trajectories::ExponentialPlusPiecewisePolynomial<double> com_;
trajectories::ExponentialPlusPiecewisePolynomial<double> comd_;
trajectories::ExponentialPlusPiecewisePolynomial<double> comdd_;
// System dynamics matrices.
Eigen::Matrix<double, 4, 4> A_;
Eigen::Matrix<double, 4, 2> B_;
Eigen::Matrix<double, 2, 4> C_;
Eigen::Matrix<double, 2, 2> D_;
Eigen::Matrix<double, 2, 4> NB_;
Eigen::Matrix<double, 2, 2> R1i_;
Eigen::Matrix<double, 4, 4> A2_;
Eigen::Matrix<double, 4, 2> B2_;
// One step cost function:
// L = (y - y_d)^T * Qy * (y - y_d)^T + u^T * R * u.
Eigen::Matrix<double, 2, 2> Qy_, R_;
// Value function
// V = x_bar^T * S1 * x_bar + x_bar^T * s2 + constant_term.
Eigen::Matrix<double, 4, 4> S1_;
trajectories::ExponentialPlusPiecewisePolynomial<double> s2_;
// Linear policy.
// u = K * x_bar + k2
Eigen::Matrix<double, 2, 4> K_;
trajectories::ExponentialPlusPiecewisePolynomial<double> k2_;
bool planned_{false};
};
using ZMPPlanner DRAKE_DEPRECATED("2023-06-01",
"Use ZmpPlanner instead") = ZmpPlanner;
} // namespace controllers
} // namespace systems
} // namespace drake