新增将数据点和MD一同聚类的代码

MD-metrics-HPO
HuangJintao 11 months ago
parent a2b297bf01
commit 106f3eabf3

@ -0,0 +1,66 @@
# 将数据点和MD一起聚类
import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from draw_md_cluster import DBSCAN
from ml_er.ml_entity_resolver import build_col_pairs_sim_tensor_dict
def plot(md_keys_, data_, data_points_, labels_, output_path_):
clusterNum = len(set(labels_))
fig = plt.figure()
scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']
ax = fig.add_subplot(111, projection='3d')
for i in range(-1, clusterNum):
colorStyle = scatterColors[i % len(scatterColors)]
subCluster = data_[np.where(labels_ == i)]
ax.scatter(subCluster[:, 0], subCluster[:, 1], subCluster[:, 2], c=colorStyle, s=12)
ax.scatter(data_points_[:, 0], data_points_[:, 1], data_points_[:, 2], c='#66CCFF', s=12, marker='x')
ax.set_xlabel(md_keys_[0], rotation=0) # 设置标签角度
ax.set_ylabel(md_keys_[1], rotation=-45)
ax.set_zlabel(md_keys_[2], rotation=0)
plt.title(output_path_.split('\\')[-1].split('.')[0])
plt.savefig(output_path_, dpi=500)
plt.show()
if __name__ == '__main__':
outcome_path = r'E:\Data\Research\Outcome'
config_dir = r'\Magellan+Smac+roberta-large-nli-stsb-mean-tokens+inter-0.5'
dataset_name_list = [f.name for f in os.scandir(outcome_path) if f.is_dir()]
for dataset_name in dataset_name_list:
absolute_path = outcome_path + rf'\{dataset_name}' + config_dir + r'\mds.txt' # MD路径
predictions = outcome_path + rf'\{dataset_name}' + config_dir + r'\predictions.csv' # prediction路径
pred = pd.read_csv(predictions)
pred = pred.astype(str)
pred = pred[pred['predicted'] == str(1)]
sim_tensor_dict = build_col_pairs_sim_tensor_dict(pred)
# 选取的三个字段
md_keys = []
with open(absolute_path, 'r') as f:
# 读取每一行的md加入该文件的md列表
data = []
for line in f.readlines():
md_metadata = line.strip().split('\t')
md_tuple = eval(md_metadata[1])
md_keys = list(md_tuple[0].keys())[1:4]
md_values = list(md_tuple[0].values())
data.append(md_values[1:4])
if len(data) == 10000:
break
data_points = []
for _ in range(len(pred)):
data_point_value = []
for key in md_keys:
sim_tensor = sim_tensor_dict[key]
data_point_value.append(round(float(sim_tensor[_]), 4))
data_points.append(data_point_value)
data = np.array(data, dtype=np.float32)
data_points = np.array(data_points, dtype=np.float32)
labels = DBSCAN(data, 0.5, 30)
output_path = outcome_path + rf'\{dataset_name}_MD&data.png'
plot(md_keys, data, data_points, labels, output_path)

@ -113,6 +113,7 @@ def is_explicable(row, all_mds: list, st_dict):
return -1.0 # 遍历结束,不能解释 return -1.0 # 遍历结束,不能解释
# 形成一个字典key为字段名称value为一维张量记录了预测表中这一字段每行的左右属性的相似度
def build_col_pairs_sim_tensor_dict(predictions: pandas.DataFrame): def build_col_pairs_sim_tensor_dict(predictions: pandas.DataFrame):
predictions_attrs = predictions.columns.values.tolist() predictions_attrs = predictions.columns.values.tolist()
col_tuple_list = [] col_tuple_list = []

Loading…
Cancel
Save