将相似度阈值、support阈值、confidence阈值交给smac调节

封装ER函数
MD-metrics-HPO
HuangJintao 1 year ago
parent ff52072867
commit 9a4dfde047

@ -3,7 +3,7 @@ import os
import numpy as np import numpy as np
import torch import torch
import json import json
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
from ConfigSpace.conditions import InCondition from ConfigSpace.conditions import InCondition
from ConfigSpace.read_and_write import json as csj from ConfigSpace.read_and_write import json as csj
import py_entitymatching as em import py_entitymatching as em
@ -11,36 +11,11 @@ import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario from smac import HyperparameterOptimizationFacade, Scenario
from settings import *
from ml_er.ml_entity_resolver import evaluate_prediction, load_mds, is_explicable, build_col_pairs_sim_tensor_dict
# 数据在外部加载
########################################################################################################################
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
# ltable.fillna("", inplace=True)
rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
# rtable.fillna("", inplace=True)
mappings = pd.read_csv(mapping_path)
lid_mapping_list = []
rid_mapping_list = []
# 全部转为字符串
# ltable = ltable.astype(str)
# rtable = rtable.astype(str)
# mappings = mappings.astype(str)
matching_number = len(mappings) # 所有阳性样本数商品数据集应为1300
for index, row in mappings.iterrows(): from md_discovery.md_discover import md_discover
lid_mapping_list.append(row[mapping_lid]) from settings import *
rid_mapping_list.append(row[mapping_rid]) from ml_er.ml_entity_resolver import evaluate_prediction, load_mds, is_explicable, build_col_pairs_sim_tensor_dict, \
# 仅保留两表中出现在映射表中的行,增大正样本比例 process_prediction_for_md_discovery, er_process
selected_ltable = ltable[ltable[ltable_id].isin(lid_mapping_list)]
# if len(lr_attrs_map) > 0:
# selected_ltable = selected_ltable.rename(columns=lr_attrs_map) # 参照右表,修改左表中与右表对应但不同名的字段
tables_id = rtable_id # 不论左表右表ID字段名是否一致经上一行调整统一以右表为准
selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
########################################################################################################################
class Classifier: class Classifier:
@ -48,165 +23,207 @@ class Classifier:
def configspace(self) -> ConfigurationSpace: def configspace(self) -> ConfigurationSpace:
# Build Configuration Space which defines all parameters and their ranges # Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace(seed=0) cs = ConfigurationSpace(seed=0)
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
selected_attrs = ltable.columns.values.tolist()
block_attr_items = selected_attrs[:] block_attr_items = selected_attrs[:]
block_attr_items.remove(tables_id) block_attr_items.remove(ltable_id)
block_attr = Categorical("block_attr", block_attr_items) block_attr = Categorical("block_attr", block_attr_items)
overlap_size = Integer("overlap_size", (1, 3), default=1) overlap_size = Integer("overlap_size", (1, 3), default=1)
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf") ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf")
ml_blocker = Categorical("ml_blocker", ["over_lap", "attr_equiv"], default="over_lap") ml_blocker = Categorical("ml_blocker", ["over_lap", "attr_equiv"], default="over_lap")
similarity_thresh = Float("similarity_thresh", (0.2, 0.21))
support_thresh = Integer("support_thresh", (1, 1000))
confidence_thresh = Float("confidence_thresh", (0.25, 0.5))
use_overlap_size = InCondition(child=overlap_size, parent=ml_blocker, values=["over_lap"]) use_overlap_size = InCondition(child=overlap_size, parent=ml_blocker, values=["over_lap"])
cs.add_hyperparameters([block_attr, overlap_size, ml_matcher, ml_blocker]) cs.add_hyperparameters([block_attr, overlap_size, ml_matcher, ml_blocker,
similarity_thresh, support_thresh, confidence_thresh])
cs.add_conditions([use_overlap_size]) cs.add_conditions([use_overlap_size])
return cs return cs
# train 就是整个函数 只需将返回结果由预测变成预测结果的评估 # train 就是整个函数 只需将返回结果由预测变成预测结果的评估
def train(self, config: Configuration, seed: int = 0) -> float: def train(self, config: Configuration, seed: int = 0) -> float:
cm.del_catalog() cm.del_catalog()
attrs_with_l_prefix = ['ltable_' + i for i in selected_attrs] # 字段名加左前缀 indicators = er_process(config)
attrs_with_r_prefix = ['rtable_' + i for i in selected_attrs] # 字段名加右前缀 return 1-indicators['performance']
cm.set_key(selected_ltable, tables_id)
cm.set_key(selected_rtable, tables_id) # # 数据在外部加载
if config["ml_blocker"] == "over_lap": # ########################################################################################################################
blocker = em.OverlapBlocker() # ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"], # cm.set_key(ltable, ltable_id)
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs, # # ltable.fillna("", inplace=True)
overlap_size=config["overlap_size"], show_progress=False, # rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
allow_missing=True) # cm.set_key(rtable, rtable_id)
elif config["ml_blocker"] == "attr_equiv": # # rtable.fillna("", inplace=True)
blocker = em.AttrEquivalenceBlocker() # mappings = pd.read_csv(mapping_path, encoding='ISO-8859-1')
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"], #
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs, # lid_mapping_list = []
allow_missing=True) # rid_mapping_list = []
# # 全部转为字符串
candidate['gold'] = 0 # # ltable = ltable.astype(str)
candidate = candidate.reset_index(drop=True) # # rtable = rtable.astype(str)
candidate_match_rows = [] # # mappings = mappings.astype(str)
for line in candidate.itertuples(): # matching_number = len(mappings) # 所有阳性样本数商品数据集应为1300
l_id = getattr(line, 'ltable_' + tables_id) #
map_row = mappings[mappings[mapping_lid] == l_id] # for index, row in mappings.iterrows():
# lid_mapping_list.append(row[mapping_lid])
if map_row is not None: # rid_mapping_list.append(row[mapping_rid])
r_id = map_row[mapping_rid] # # 仅保留两表中出现在映射表中的行,增大正样本比例
for value in r_id: # selected_ltable = ltable[ltable[ltable_id].isin(lid_mapping_list)]
if value == getattr(line, 'rtable_' + tables_id): # # if len(lr_attrs_map) > 0:
candidate_match_rows.append(line[0]) # # selected_ltable = selected_ltable.rename(columns=lr_attrs_map) # 参照右表,修改左表中与右表对应但不同名的字段
else: # tables_id = rtable_id # 不论左表右表ID字段名是否一致经上一行调整统一以右表为准
continue # selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
for _ in candidate_match_rows: # selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
candidate.loc[_, 'gold'] = 1 # ########################################################################################################################
#
candidate.fillna("", inplace=True) # attrs_with_l_prefix = ['ltable_' + i for i in selected_attrs] # 字段名加左前缀
# attrs_with_r_prefix = ['rtable_' + i for i in selected_attrs] # 字段名加右前缀
# 裁剪负样本,保持正负样本数量一致 # cm.set_key(selected_ltable, tables_id)
candidate_mismatch = candidate[candidate['gold'] == 0] # cm.set_key(selected_rtable, tables_id)
candidate_match = candidate[candidate['gold'] == 1] #
if len(candidate_mismatch) > len(candidate_match): # if config["ml_blocker"] == "over_lap":
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match)) # blocker = em.OverlapBlocker()
# 拼接正负样本 # candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"],
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match]) # l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
if len(candidate_for_train_test) == 0: # overlap_size=config["overlap_size"], show_progress=False,
return 1 # allow_missing=True)
candidate_for_train_test = candidate_for_train_test.reset_index(drop=True) # elif config["ml_blocker"] == "attr_equiv":
cm.set_key(candidate_for_train_test, '_id') # blocker = em.AttrEquivalenceBlocker()
cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + tables_id) # candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"],
cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + tables_id) # l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
cm.set_ltable(candidate_for_train_test, selected_ltable) # allow_missing=True)
cm.set_rtable(candidate_for_train_test, selected_rtable) #
# candidate['gold'] = 0
# 分为训练测试集 # candidate = candidate.reset_index(drop=True)
train_proportion = 0.7 # candidate_match_rows = []
test_proportion = 0.3 # for line in candidate.itertuples():
sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0) # l_id = getattr(line, 'ltable_' + tables_id)
train_set = sets['train'] # map_row = mappings[mappings[mapping_lid] == l_id]
test_set = sets['test'] #
# if map_row is not None:
cm.set_key(train_set, '_id') # r_id = map_row[mapping_rid]
cm.set_fk_ltable(train_set, 'ltable_' + tables_id) # for value in r_id:
cm.set_fk_rtable(train_set, 'rtable_' + tables_id) # if value == getattr(line, 'rtable_' + tables_id):
cm.set_ltable(train_set, selected_ltable) # candidate_match_rows.append(line[0])
cm.set_rtable(train_set, selected_rtable) # else:
# continue
cm.set_key(test_set, '_id') # for _ in candidate_match_rows:
cm.set_fk_ltable(test_set, 'ltable_' + tables_id) # candidate.loc[_, 'gold'] = 1
cm.set_fk_rtable(test_set, 'rtable_' + tables_id) #
cm.set_ltable(test_set, selected_ltable) # candidate.fillna("", inplace=True)
cm.set_rtable(test_set, selected_rtable) #
# # 裁剪负样本,保持正负样本数量一致
if config["ml_matcher"] == "dt": # candidate_mismatch = candidate[candidate['gold'] == 0]
matcher = em.DTMatcher(name='DecisionTree', random_state=0) # candidate_match = candidate[candidate['gold'] == 1]
elif config["ml_matcher"] == "svm": # if len(candidate_mismatch) > len(candidate_match):
matcher = em.SVMMatcher(name='SVM', random_state=0) # candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
elif config["ml_matcher"] == "rf": # # 拼接正负样本
matcher = em.RFMatcher(name='RF', random_state=0) # candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
elif config["ml_matcher"] == "lg": # if len(candidate_for_train_test) == 0:
matcher = em.LogRegMatcher(name='LogReg', random_state=0)
elif config["ml_matcher"] == "ln":
matcher = em.LinRegMatcher(name='LinReg')
elif config["ml_matcher"] == "nb":
matcher = em.NBMatcher(name='NaiveBayes')
feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after=['gold'],
show_progress=False)
train_feature_vecs.fillna(value=0, inplace=True)
test_feature_after = attrs_with_l_prefix[:]
test_feature_after.extend(attrs_with_r_prefix)
for _ in test_feature_after:
if _.endswith(tables_id):
test_feature_after.remove(_)
test_feature_after.append('gold')
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
attrs_after=test_feature_after, show_progress=False)
test_feature_vecs.fillna(value=0, inplace=True)
fit_exclude = ['_id', 'ltable_' + tables_id, 'rtable_' + tables_id, 'gold']
matcher.fit(table=train_feature_vecs, exclude_attrs=fit_exclude, target_attr='gold')
test_feature_after.extend(['_id', 'ltable_' + tables_id, 'rtable_' + tables_id])
predictions = matcher.predict(table=test_feature_vecs, exclude_attrs=test_feature_after,
append=True, target_attr='predicted', inplace=False)
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, candidate_for_train_test)
print(indicators)
# 计算可解释性
predictions_attrs = []
predictions_attrs.extend(attrs_with_l_prefix)
predictions_attrs.extend(attrs_with_r_prefix)
predictions_attrs.extend(['gold', 'predicted'])
predictions = predictions[predictions_attrs]
predictions = predictions.reset_index(drop=True)
predictions = predictions.astype(str)
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
# 默认路径为 "../md_discovery/output/xxx.txt"
# mds/vio 共2个md文件
md_paths = [md_output_dir + 'mds.txt', md_output_dir + 'vio.txt']
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
epl_match = 0 # 可解释预测match
if len(md_list) > 0:
for line in predictions.itertuples():
if is_explicable(line, md_list, sim_tensor_dict) and str(getattr(line, 'predicted')) == str(1):
epl_match += 1
ppre = predictions[predictions['predicted'] == str(1)]
interpretability = epl_match / len(ppre) # 可解释性
if (indicators["block_recall"] < 0.8) and (indicators["block_recall"] < indicators["recall"]):
f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / (
indicators["precision"] + indicators["block_recall"])
else:
f1 = indicators["F1"]
# if indicators["block_recall"] < 0.8:
# return 1 # return 1
# f1 = indicators["F1"] # candidate_for_train_test = candidate_for_train_test.reset_index(drop=True)
performance = interpre_weight * interpretability + (1 - interpre_weight) * f1 # cm.set_key(candidate_for_train_test, '_id')
print('Interpretability: ', interpretability) # cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + tables_id)
return 1 - performance # cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + tables_id)
# cm.set_ltable(candidate_for_train_test, selected_ltable)
# cm.set_rtable(candidate_for_train_test, selected_rtable)
#
# # 分为训练测试集
# train_proportion = 0.7
# test_proportion = 0.3
# sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
# train_set = sets['train']
# test_set = sets['test']
#
# cm.set_key(train_set, '_id')
# cm.set_fk_ltable(train_set, 'ltable_' + tables_id)
# cm.set_fk_rtable(train_set, 'rtable_' + tables_id)
# cm.set_ltable(train_set, selected_ltable)
# cm.set_rtable(train_set, selected_rtable)
#
# cm.set_key(test_set, '_id')
# cm.set_fk_ltable(test_set, 'ltable_' + tables_id)
# cm.set_fk_rtable(test_set, 'rtable_' + tables_id)
# cm.set_ltable(test_set, selected_ltable)
# cm.set_rtable(test_set, selected_rtable)
#
# if config["ml_matcher"] == "dt":
# matcher = em.DTMatcher(name='DecisionTree', random_state=0)
# elif config["ml_matcher"] == "svm":
# matcher = em.SVMMatcher(name='SVM', random_state=0)
# elif config["ml_matcher"] == "rf":
# matcher = em.RFMatcher(name='RF', random_state=0)
# elif config["ml_matcher"] == "lg":
# matcher = em.LogRegMatcher(name='LogReg', random_state=0)
# elif config["ml_matcher"] == "ln":
# matcher = em.LinRegMatcher(name='LinReg')
# elif config["ml_matcher"] == "nb":
# matcher = em.NBMatcher(name='NaiveBayes')
# feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False)
#
# train_feature_vecs = em.extract_feature_vecs(train_set,
# feature_table=feature_table,
# attrs_after=['gold'],
# show_progress=False)
# train_feature_vecs.fillna(value=0, inplace=True)
# test_feature_after = attrs_with_l_prefix[:]
# test_feature_after.extend(attrs_with_r_prefix)
# for _ in test_feature_after:
# if _.endswith(tables_id):
# test_feature_after.remove(_)
# test_feature_after.append('gold')
# test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
# attrs_after=test_feature_after, show_progress=False)
# test_feature_vecs.fillna(value=0, inplace=True)
# fit_exclude = ['_id', 'ltable_' + tables_id, 'rtable_' + tables_id, 'gold']
# matcher.fit(table=train_feature_vecs, exclude_attrs=fit_exclude, target_attr='gold')
#
# test_feature_after.extend(['_id', 'ltable_' + tables_id, 'rtable_' + tables_id])
# predictions = matcher.predict(table=test_feature_vecs, exclude_attrs=test_feature_after,
# append=True, target_attr='predicted', inplace=False)
# eval_result = em.eval_matches(predictions, 'gold', 'predicted')
# em.print_eval_summary(eval_result)
# indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, candidate_for_train_test)
# print(indicators)
#
# # 计算可解释性
# predictions_attrs = []
# predictions_attrs.extend(attrs_with_l_prefix)
# predictions_attrs.extend(attrs_with_r_prefix)
# predictions_attrs.extend(['gold', 'predicted'])
# predictions = predictions[predictions_attrs]
# process_prediction_for_md_discovery(predictions)
# predictions = predictions.reset_index(drop=True)
# predictions = predictions.astype(str)
# sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
#
# # 默认路径为 "../md_discovery/output/xxx.txt"
# # mds/vio 共2个md文件
# md_discover(config)
# md_paths = [md_output_dir + 'mds.txt', md_output_dir + 'vio.txt']
# md_list = load_mds(md_paths) # 从全局变量中读取所有的md
# epl_match = 0 # 可解释预测match
# if len(md_list) > 0:
# for line in predictions.itertuples():
# if is_explicable(line, md_list, sim_tensor_dict) and str(getattr(line, 'predicted')) == str(1):
# epl_match += 1
#
# ppre = predictions[predictions['predicted'] == str(1)]
# interpretability = epl_match / len(ppre) # 可解释性
#
# if (indicators["block_recall"] < 0.8) and (indicators["block_recall"] < indicators["recall"]):
# f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / (
# indicators["precision"] + indicators["block_recall"])
# else:
# f1 = indicators["F1"]
# # if indicators["block_recall"] < 0.8:
# # return 1
# # f1 = indicators["F1"]
# performance = interpre_weight * interpretability + (1 - interpre_weight) * f1
# print('Interpretability: ', interpretability)
# return 1 - performance
def ml_er_hpo(): def ml_er_hpo():
@ -215,13 +232,13 @@ def ml_er_hpo():
str_configspace = csj.write(cs) str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace) dict_configspace = json.loads(str_configspace)
with open(hpo_output_dir + "configspace.json", "w") as f: with open(hpo_output_dir + "configspace.json", "w") as f:
json.dump(dict_configspace, f) json.dump(dict_configspace, f, indent=4)
# Next, we create an object, holding general information about the run # Next, we create an object, holding general information about the run
scenario = Scenario( scenario = Scenario(
cs, cs,
deterministic=True, deterministic=True,
n_trials=12, # We want to run max 50 trials (combination of config and seed) n_trials=50, # We want to run max 50 trials (combination of config and seed)
n_workers=1 n_workers=1
) )
@ -248,9 +265,8 @@ def ml_er_hpo():
print(f"Optimized Configuration:{incumbent.values()}") print(f"Optimized Configuration:{incumbent.values()}")
incumbent_ndarray = incumbent.get_array() with open(hpo_output_dir + "incumbent.json", "w") as f:
np.save(hpo_output_dir + 'incumbent.npy', incumbent_ndarray) json.dump(dict(incumbent), f, indent=4)
return incumbent return incumbent

@ -1,3 +1,5 @@
from ConfigSpace import Configuration
from md_discovery import tmp_discover from md_discovery import tmp_discover
from settings import * from settings import *
@ -15,11 +17,11 @@ from settings import *
# f.write(str(_) + '\n') # f.write(str(_) + '\n')
def md_discover(): def md_discover(config: Configuration):
t_single_tuple_path = er_output_dir + "t_single_tuple.csv" t_single_tuple_path = er_output_dir + "t_single_tuple.csv"
# 输入csv文件路径md左侧相似度阈值md右侧目标字段 # 输入csv文件路径md左侧相似度阈值md右侧目标字段
# 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值 # 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值
mds_list, vio_list = tmp_discover.pairs_inference(t_single_tuple_path, similarity_threshold, target_attr) mds_list, vio_list = tmp_discover.pairs_inference(t_single_tuple_path, target_attr, config)
# 将列表1写入本地路径需自己修改 # 将列表1写入本地路径需自己修改
mds_path = md_output_dir + "mds.txt" mds_path = md_output_dir + "mds.txt"
@ -38,5 +40,5 @@ def md_discover():
f.write('\n') f.write('\n')
if __name__ == '__main__': # if __name__ == '__main__':
md_discover() # md_discover()

@ -1,276 +0,0 @@
import multiprocessing
import pandas as pd
import Levenshtein
import copy
import numpy as np
import time
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
from settings import model, er_output_dir
from sentence_transformers.util import cos_sim
conf_thresh = 0.8
def my_Levenshtein_ratio(str1, str2):
if max(len(str1), len(str2)) == 0:
return 1
return 1 - Levenshtein.distance(str1, str2) / max(len(str1), len(str2))
def norm_cos_sim(embed1, embed2):
sim = cos_sim(embed1, embed2)
return sim.tolist()[0][0]/2 + 0.5
def table_encode(tp_path, fn_path):
embedding_dic = {}
tp_data = pd.read_csv(tp_path, low_memory=False, encoding='ISO-8859-1')
tp_data.fillna("", inplace=True)
tp_data = tp_data.astype(str)
tp_length = tp_data.shape[0]
tp_width = tp_data.shape[1]
tp_sentences = []
for row in range(0, tp_length):
for col in range(0, tp_width):
cell_value = tp_data.values[row, col]
tp_sentences.append(cell_value)
tp_embedding = model.encode(tp_sentences, convert_to_tensor=True, device="cuda")
list_tp_embedding = tp_embedding.tolist()
for row in range(0, tp_length):
for col in range(0, tp_width):
cell_value = tp_data.values[row, col]
embedding_dic[cell_value] = list_tp_embedding[row * tp_width + col]
fn_data = pd.read_csv(fn_path, low_memory=False, encoding='ISO-8859-1')
fn_data.fillna("", inplace=True)
fn_data = fn_data.astype(str)
fn_length = fn_data.shape[0]
fn_width = fn_data.shape[1]
fn_sentences = []
for row in range(0, fn_length):
for col in range(0, fn_width):
cell_value = fn_data.values[row, col]
fn_sentences.append(cell_value)
fn_embedding = model.encode(fn_sentences, convert_to_tensor=True, device="cuda")
list_fn_embedding = fn_embedding.tolist()
for row in range(0, fn_length):
for col in range(0, fn_width):
cell_value = fn_data.values[row, col]
embedding_dic[cell_value] = list_fn_embedding[row * fn_width + col]
np.save('embedding_dic.npy', embedding_dic)
def test_table_encode():
start = time.time()
table_encode(er_output_dir+'tp_single_tuple.csv', er_output_dir+'fn_single_tuple.csv')
print(time.time()-start)
def test_load():
load_dict = np.load('embedding_dic.npy', allow_pickle=True).item()
a = load_dict['model- bdcd00105wi venor- bitdefender features- bitdefender antivirus v10- small box antivirus v10 delivers a one-two security punch integrating todays most powerful antivirus and antispyware modules into one convenient package. its easy to use and updates itself automatically making it truly an install and forget solution. * antivirus the purpose of the antivirus module is to ensure detection and removal of all viruses in the wild. bitdefender antivirus uses robust scan engines certified by icsa labs virus bulletin checkmark checkvir and tuv. - improved proactive detection b-have (behavioral heuristic analyzer in virtual environments) emulates a virtual computer-inside-a-computer where pieces of software are run in order to check for potential malware behavior. this bitdefender proprietary technology represents a new security layer that keeps the operating system safe from unknown viruses by detecting malicious pieces of code for which signatures have not yet been released. - permanent antivirus protection the new and improved bitdefender scanning engines will scan and disinfect infected files on access minimizing data loss. infected documents can now be recovered instead of being deleted. - new rootkit detection and removal a new bitdefender module looks for rootkits (malicious programs designed to control victim computers while staying hidden) and removes them on detection. - new web scanning web traffic is now filtered in real-time even before reaching your browser providing a safe and enjoyable web experience. - peer-2-peer and im applications protection filters against viruses that spread']
print(a)
print(1)
# def test_lm_similarity():
# print(time.time())
# sentences = ['fun with reading & writing! is designed to help kids learn to read and write better through exercises puzzle-solving creative writing decoding and more!',
# 'based on the tween lifestyle brand launched in 2004 this action/adventure game will contain loads of adventures tailored specifically to the player\'s personality type. the evergirl brand features a clothing and accessories line with a companion web ...']
# embeddings = model.encode(sentences, convert_to_tensor=True)
# print(time.time())
# sim = cos_sim(embeddings[0], embeddings[1])
# print(time.time())
# # print(sim.tolist()[0][0]/2 + 0.5)
def is_minimal(md, md_list, target_col):
# 假设这个md是minimal
minimal = True
if len(md_list) == 0:
return True
if md_list.count(md) > 1:
return False
for _ in md_list:
if _ != md:
# 假设列表中每一个md都使当前md不minimal
exist = True
# 如果左边任何一个大于,则假设不成立
for col in list(set(_.keys()) - {target_col}):
if _[col] > md[col]:
exist = False
# 如果右边小于,假设也不成立
if _[target_col] < md[target_col]:
exist = False
# 任何一次假设成立当前md不minimal
if exist:
minimal = False
break
return minimal
def remove_by_confidence(md, l, relation, target_col, lock):
support, confidence = get_one_md_metadata(md, relation, target_col)
if confidence < 0.8:
with lock:
l.remove(md)
# def remove_by_confidence(md, l, relation, target_col):
# boolean, conf = satisfy_confidence(md, relation, 0.8, target_col)
# if not boolean:
# l.remove(md)
# print(md, '\t', conf)
def inference_from_record_pairs(path, threshold, target_col):
data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
data.fillna("", inplace=True)
data = data.astype(str)
columns = data.columns.values.tolist()
other_columns = list(set(columns) - {target_col})
md_list = []
minimal_vio = []
init_md = {}
for col in columns:
init_md[col] = 1 if col == target_col else 0
md_list.append(init_md)
for row1 in tqdm(data.itertuples()):
# 获取当前行的索引,从后一行开始切片
i = row1[0]
data1 = data[i + 1:]
for row2 in data1.itertuples():
violated_mds = []
# sims是两行的相似度
sims = {}
for col in columns:
similarity = norm_cos_sim(getattr(row1, col), getattr(row2, col))
sims[col] = similarity
# 寻找violated md,从md列表中删除并加入vio列表
# tmp_md_list = copy.deepcopy(md_list)
for md in md_list[:]:
lhs_satis = True
rhs_satis = True
for col in other_columns:
if sims[col] + 0.0000001 < md[col]:
lhs_satis = False
break
if sims[target_col] + 0.0000001 < md[target_col]:
rhs_satis = False
if lhs_satis == True and rhs_satis == False:
md_list.remove(md)
violated_mds.append(md)
# minimal_vio.extend(violated_mds)
for vio_md in violated_mds:
# 特殊化右侧,我们需要右侧百分百相似,其实不需要降低右侧阈值
# if sims[target_col] >= threshold:
# new_rhs = sims[target_col]
# spec_r_md = copy.deepcopy(vio_md)
# spec_r_md[target_col] = new_rhs
# if is_minimal(spec_r_md, md_list, target_col):
# md_list.append(spec_r_md)
# 特殊化左侧
for col in other_columns:
if sims[col] + 0.01 <= 1:
spec_l_md = copy.deepcopy(vio_md)
spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.01
if is_minimal(spec_l_md, md_list, target_col):
md_list.append(spec_l_md)
# for vio in minimal_vio[:]:
# if not is_minimal(vio, md_list, target_col):
# minimal_vio.remove(vio)
# fuck = len(minimal_vio)
# tmp = []
# for _ in minimal_vio:
# if _ not in tmp:
# tmp.append(_)
# minimal_vio = tmp
# manager = multiprocessing.Manager()
# lock = manager.Lock()
# if len(minimal_vio) == 0:
# return md_list, []
# pool_size = len(minimal_vio) if len(minimal_vio) < 16 else 16
# pool = multiprocessing.Pool(pool_size)
# # tmp = copy.deepcopy(minimal_vio)
# with manager:
# proxy_minimal_vio = manager.list(minimal_vio)
# for _ in minimal_vio[:]:
# pool.apply_async(remove_by_confidence, args=(_, proxy_minimal_vio, data, target_col, lock))
# pool.close()
# pool.join()
# minimal_vio = list(proxy_minimal_vio)
#
# for _ in minimal_vio[:]:
# if not is_minimal(_, minimal_vio, target_col):
# minimal_vio.remove(_)
#
for _ in md_list[:]:
if not is_minimal(_, md_list, target_col):
md_list.remove(_)
return md_list, minimal_vio
def get_mds_metadata(md_list, dataset_path, target_col):
data = pd.read_csv(dataset_path, low_memory=False, encoding='ISO-8859-1')
data.fillna("", inplace=True)
data = data.astype(str)
manager = multiprocessing.Manager()
if len(md_list) == 0:
return []
pool_size = len(md_list) if len(md_list) < 16 else 16
pool = multiprocessing.Pool(pool_size)
result = []
with manager:
for _ in md_list:
task = pool.apply_async(get_one_md_metadata, args=(_, data, target_col))
support, confidence = task.get()
result.append({"md": _, "support": support, "confidence": confidence})
pool.close()
pool.join()
return result
def get_one_md_metadata(md, dataframe, target_col):
support = 0
pre_confidence = 0
columns = dataframe.columns.values.tolist()
for row1 in dataframe.itertuples():
i = row1[0]
df_slice = dataframe[i + 1:]
for row2 in df_slice.itertuples():
left_satisfy = True
both_satisfy = True
for col in columns:
sim = norm_cos_sim(getattr(row1, col), getattr(row2, col))
if col == target_col:
if sim + 0.0000001 < 1:
both_satisfy = False
else:
if sim + 0.0000001 < md[col]:
left_satisfy = False
both_satisfy = False
if left_satisfy:
support += 1
if both_satisfy:
pre_confidence += 1
confidence = 0 if support == 0 else pre_confidence / support
# return {"md": md, "support": support, "confidence": confidence}
return support, confidence

@ -8,9 +8,10 @@ import pandas as pd
import copy import copy
import torch import torch
from ConfigSpace import Configuration
from tqdm import tqdm from tqdm import tqdm
from settings import model, md_output_dir, confidence_threshold, support_threshold from settings import model
def is_minimal(md, md_list, target_col): def is_minimal(md, md_list, target_col):
@ -38,7 +39,10 @@ def is_minimal(md, md_list, target_col):
return minimal return minimal
def pairs_inference(path, threshold, target_col): def pairs_inference(path, target_col, conf: Configuration):
simt = conf["similarity_thresh"]
supt = conf["support_thresh"]
cont = conf["confidence_thresh"]
data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1') data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
data.fillna("", inplace=True) data.fillna("", inplace=True)
data = data.astype(str) data = data.astype(str)
@ -98,7 +102,7 @@ def pairs_inference(path, threshold, target_col):
for col in cols_but_target: for col in cols_but_target:
if sims[col] + 0.01 <= 1: if sims[col] + 0.01 <= 1:
spec_l_md = copy.deepcopy(vio_md) spec_l_md = copy.deepcopy(vio_md)
spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.01 spec_l_md[col] = simt if sims[col] < simt else sims[col] + 0.01
if is_minimal(spec_l_md, md_list, target_col): if is_minimal(spec_l_md, md_list, target_col):
md_list.append(spec_l_md) md_list.append(spec_l_md)
if vio_md not in minimal_vio: if vio_md not in minimal_vio:
@ -149,16 +153,16 @@ def pairs_inference(path, threshold, target_col):
md_rm_list = [] md_rm_list = []
for _ in md_list: for _ in md_list:
support, confidence = get_metrics(_, data, sim_tensor, target_col, target_index) support, confidence = get_metrics(_, data, sim_tensor, target_col, target_index)
if support < support_threshold: if support < supt:
md_rm_list.append(_) md_rm_list.append(_)
for _ in md_rm_list: for _ in md_rm_list:
md_list.remove(_) md_list.remove(_)
for md in minimal_vio: for md in minimal_vio:
support, confidence = get_metrics(md, data, sim_tensor, target_col, target_index) support, confidence = get_metrics(md, data, sim_tensor, target_col, target_index)
# fuck.append((support, confidence)) # fuck.append((support, confidence))
if support < support_threshold: if support < supt:
remove_list.append(md) remove_list.append(md)
if confidence < confidence_threshold and md not in remove_list: if confidence < cont and md not in remove_list:
remove_list.append(md) remove_list.append(md)
# fuck_me = sorted(fuck, key=lambda x: x[1], reverse=True) # fuck_me = sorted(fuck, key=lambda x: x[1], reverse=True)
for _ in remove_list: for _ in remove_list:
@ -169,6 +173,7 @@ def pairs_inference(path, threshold, target_col):
minimal_vio.remove(_) minimal_vio.remove(_)
print('\033[31m' + 'vio_length\t' + str(len(minimal_vio)) + '\033[0m') print('\033[31m' + 'vio_length\t' + str(len(minimal_vio)) + '\033[0m')
print(f"Support: {supt}\tConfidence: {cont}")
return md_list, minimal_vio return md_list, minimal_vio

@ -12,6 +12,8 @@ import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd import pandas as pd
import six import six
from ConfigSpace import Configuration from ConfigSpace import Configuration
from md_discovery.md_discover import md_discover
from settings import * from settings import *
@ -144,7 +146,7 @@ def build_col_pairs_sim_tensor_dict(predictions: pandas.DataFrame):
return sim_tensor_dict return sim_tensor_dict
def ml_er(iter_round: int, config: Configuration = None, ): def er_process(config: Configuration):
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1') ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
cm.set_key(ltable, ltable_id) cm.set_key(ltable, ltable_id)
# ltable.fillna("", inplace=True) # ltable.fillna("", inplace=True)
@ -172,45 +174,22 @@ def ml_er(iter_round: int, config: Configuration = None, ):
tables_id = rtable_id tables_id = rtable_id
selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)] selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名 selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
items_but_id = selected_attrs[:]
items_but_id.remove(tables_id) # 两张表中除了id的字段名
attrs_with_l_prefix = ['ltable_' + i for i in selected_attrs] attrs_with_l_prefix = ['ltable_' + i for i in selected_attrs]
attrs_with_r_prefix = ['rtable_' + i for i in selected_attrs] attrs_with_r_prefix = ['rtable_' + i for i in selected_attrs]
cm.set_key(selected_ltable, tables_id) cm.set_key(selected_ltable, tables_id)
cm.set_key(selected_rtable, tables_id) cm.set_key(selected_rtable, tables_id)
if config is not None: if config["ml_blocker"] == "over_lap":
ml_matcher = config["ml_matcher"]
if ml_matcher == "dt":
matcher = em.DTMatcher(name='DecisionTree', random_state=0)
elif ml_matcher == "svm":
matcher = em.SVMMatcher(name='SVM', random_state=0)
elif ml_matcher == "rf":
matcher = em.RFMatcher(name='RF', random_state=0)
elif ml_matcher == "lg":
matcher = em.LogRegMatcher(name='LogReg', random_state=0)
elif ml_matcher == "ln":
matcher = em.LinRegMatcher(name='LinReg')
elif ml_matcher == "nb":
matcher = em.NBMatcher(name='NaiveBayes')
if config["ml_blocker"] == "over_lap":
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
overlap_size=config["overlap_size"], show_progress=False)
elif config["ml_blocker"] == "attr_equiv":
blocker = em.AttrEquivalenceBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs)
else:
matcher = em.SVMMatcher(name='SVM', random_state=0)
blocker = em.OverlapBlocker() blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, selected_attrs[-1], selected_attrs[-1], candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs, l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
overlap_size=1, show_progress=False, allow_missing=True) overlap_size=config["overlap_size"], show_progress=False)
elif config["ml_blocker"] == "attr_equiv":
blocker = em.AttrEquivalenceBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs)
candidate['gold'] = 0 candidate['gold'] = 0
candidate = candidate.reset_index(drop=True) candidate = candidate.reset_index(drop=True)
@ -239,6 +218,8 @@ def ml_er(iter_round: int, config: Configuration = None, ):
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match)) candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
# 拼接正负样本 # 拼接正负样本
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match]) candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
# if len(candidate_for_train_test) == 0:
# return 0
# 如果拼接后不重设索引可能导致索引重复 # 如果拼接后不重设索引可能导致索引重复
candidate_for_train_test = candidate_for_train_test.reset_index(drop=True) candidate_for_train_test = candidate_for_train_test.reset_index(drop=True)
cm.set_key(candidate_for_train_test, '_id') cm.set_key(candidate_for_train_test, '_id')
@ -249,11 +230,36 @@ def ml_er(iter_round: int, config: Configuration = None, ):
# 分为训练测试集 # 分为训练测试集
train_proportion = 0.7 train_proportion = 0.7
test_proportion = 0.3
sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0) sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
train_set = sets['train'] train_set = sets['train']
test_set = sets['test'] test_set = sets['test']
# cm.set_key(train_set, '_id')
# cm.set_fk_ltable(train_set, 'ltable_' + tables_id)
# cm.set_fk_rtable(train_set, 'rtable_' + tables_id)
# cm.set_ltable(train_set, selected_ltable)
# cm.set_rtable(train_set, selected_rtable)
#
# cm.set_key(test_set, '_id')
# cm.set_fk_ltable(test_set, 'ltable_' + tables_id)
# cm.set_fk_rtable(test_set, 'rtable_' + tables_id)
# cm.set_ltable(test_set, selected_ltable)
# cm.set_rtable(test_set, selected_rtable)
ml_matcher = config["ml_matcher"]
if ml_matcher == "dt":
matcher = em.DTMatcher(name='DecisionTree', random_state=0)
elif ml_matcher == "svm":
matcher = em.SVMMatcher(name='SVM', random_state=0)
elif ml_matcher == "rf":
matcher = em.RFMatcher(name='RF', random_state=0)
elif ml_matcher == "lg":
matcher = em.LogRegMatcher(name='LogReg', random_state=0)
elif ml_matcher == "ln":
matcher = em.LinRegMatcher(name='LinReg')
elif ml_matcher == "nb":
matcher = em.NBMatcher(name='NaiveBayes')
feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False) feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set, train_feature_vecs = em.extract_feature_vecs(train_set,
@ -280,7 +286,6 @@ def ml_er(iter_round: int, config: Configuration = None, ):
eval_result = em.eval_matches(predictions, 'gold', 'predicted') eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result) em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, candidate_for_train_test) indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, candidate_for_train_test)
print(indicators)
# 计算可解释性 # 计算可解释性
################################################################################################################ ################################################################################################################
@ -294,6 +299,7 @@ def ml_er(iter_round: int, config: Configuration = None, ):
predictions = predictions.astype(str) predictions = predictions.astype(str)
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions) sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
md_discover(config)
md_paths = [md_output_dir + 'mds.txt', md_output_dir + 'vio.txt'] md_paths = [md_output_dir + 'mds.txt', md_output_dir + 'vio.txt']
md_list = load_mds(md_paths) # 从全局变量中读取所有的md md_list = load_mds(md_paths) # 从全局变量中读取所有的md
epl_match = 0 # 可解释预测match epl_match = 0 # 可解释预测match
@ -304,39 +310,40 @@ def ml_er(iter_round: int, config: Configuration = None, ):
df = predictions[predictions['predicted'] == str(1)] df = predictions[predictions['predicted'] == str(1)]
interpretability = epl_match / len(df) # 可解释性 interpretability = epl_match / len(df) # 可解释性
indicators['interpretability'] = interpretability
if (indicators["block_recall"] < 0.8) and (indicators["block_recall"] < indicators["recall"]): if (indicators["block_recall"] < 0.8) and (indicators["block_recall"] < indicators["recall"]):
f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / ( f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / (
indicators["precision"] + indicators["block_recall"]) indicators["precision"] + indicators["block_recall"])
else: else:
f1 = indicators["F1"] f1 = indicators["F1"]
performance = interpre_weight * interpretability + (1 - interpre_weight) * f1 performance = interpre_weight * interpretability + (1 - interpre_weight) * f1
indicators['performance'] = performance
indicators['eval_result'] = eval_result
print(indicators)
################################################################################################################ ################################################################################################################
return indicators
output_path = er_output_dir + "eval_result_" + str(iter_round) + ".txt" def ml_er(config: Configuration = None):
indicators = er_process(config)
output_path = er_output_dir + "eval_result.txt"
with open(output_path, 'w') as f: with open(output_path, 'w') as f:
for key, value in six.iteritems(_get_metric(eval_result)): for key, value in six.iteritems(_get_metric(indicators['eval_result'])):
f.write(key + " : " + value) f.write(key + " : " + value)
f.write('\n') f.write('\n')
f.write('block_recall:' + str(indicators["block_recall"]) + '\n') f.write('block_recall:' + str(indicators["block_recall"]) + '\n')
f.write('interpretability:' + str(interpretability) + '\n') f.write('interpretability:' + str(indicators['interpretability']) + '\n')
f.write('performance:' + str(performance) + '\n') f.write('performance:' + str(indicators['performance']) + '\n')
if __name__ == '__main__': if __name__ == '__main__':
iterations = 1 if os.path.isfile(hpo_output_dir + "incumbent.json"):
filename_list = os.listdir(er_output_dir)
if len(filename_list) > 0:
for _ in filename_list:
if _.startswith('eval_result'):
iterations = int(_[12:13]) + 1
if iterations > 1:
incumbent_array = np.load(hpo_output_dir + 'incumbent.npy')
with open(hpo_output_dir + "configspace.json", 'r') as f: with open(hpo_output_dir + "configspace.json", 'r') as f:
dict_configspace = json.load(f) dict_configspace = json.load(f)
str_configspace = json.dumps(dict_configspace) str_configspace = json.dumps(dict_configspace)
configspace = csj.read(str_configspace) configspace = csj.read(str_configspace)
configuration = ConfigSpace.Configuration(configspace, vector=incumbent_array) with open(hpo_output_dir + "incumbent.json", 'r') as f:
ml_er(iterations, configuration) dic = json.load(f)
else: configuration = ConfigSpace.Configuration(configspace, values=dic)
ml_er(1) ml_er(configuration)

@ -12,10 +12,10 @@ target_attr = 'id' # 进行md挖掘时的目标字段
# lr_attrs_map = {} # 如果两个表中存在对应字段名称不一样的情况,将名称加入列表便于调整一致 # lr_attrs_map = {} # 如果两个表中存在对应字段名称不一样的情况,将名称加入列表便于调整一致
model = SentenceTransformer('E:\\Data\\Research\\Models\\roberta-large-nli-stsb-mean-tokens') model = SentenceTransformer('E:\\Data\\Research\\Models\\roberta-large-nli-stsb-mean-tokens')
similarity_threshold = 0.2
support_threshold = 100
confidence_threshold = 0.4
interpre_weight = 0.5 # 可解释性权重 interpre_weight = 0.5 # 可解释性权重
# similarity_threshold = 0.2
# support_threshold = 100
# confidence_threshold = 0.4
er_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\ml_er\\output\\' er_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\ml_er\\output\\'
md_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\md_discovery\\output\\' md_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\md_discovery\\output\\'

@ -10,7 +10,7 @@ import torch
from tqdm import tqdm from tqdm import tqdm
from ConfigSpace.read_and_write import json as csj from ConfigSpace.read_and_write import json as csj
from md_discovery import tmp_discover from md_discovery import tmp_discover
from settings import er_output_dir, similarity_threshold, target_attr, hpo_output_dir from settings import er_output_dir, hpo_output_dir
def fuck(i): def fuck(i):
@ -107,13 +107,10 @@ def test7():
def test8(): def test8():
cum = np.load(hpo_output_dir + 'incumbent.npy')
with open(hpo_output_dir + "configspace.json", 'r') as load_f: with open(hpo_output_dir + "configspace.json", 'r') as load_f:
dict_configspace = json.load(load_f) dict_configspace = json.load(load_f)
str_configspace = json.dumps(dict_configspace) str_configspace = json.dumps(dict_configspace)
configspace = csj.read(str_configspace) configspace = csj.read(str_configspace)
config = ConfigSpace.Configuration(configspace, vector=cum)
print(cum)
def test9(): def test9():
@ -131,11 +128,21 @@ def test10():
sep=',', index=False, header=True, quoting=1) sep=',', index=False, header=True, quoting=1)
if __name__ == '__main__': def test11():
start = time.time() values = {
t_single_tuple_path = er_output_dir + "t_single_tuple.csv" 'block_attr': 'class',
# tp_mds, tp_vio = inference_from_record_pairs(tp_single_tuple_path, similarity_threshold, target_attr) 'confidence_thresh': 0.2717823249253852,
tp_mds, tp_vio = tmp_discover.pairs_inference(t_single_tuple_path, similarity_threshold, target_attr) 'ml_blocker': 'attr_equiv',
print(time.time() - start) 'ml_matcher': 'ln',
'similarity_thresh': 0.20681820299103484,
'support_thresh': 129,
}
with open(hpo_output_dir + "incumbent.json", "w") as f:
json.dump(values, f, indent=4)
def test12():
with open(hpo_output_dir + "incumbent.json", 'r') as f:
dic = json.load(f)
for _ in dic.keys():
print(f'Key:{_}\tValue:{dic[_]}\tType:{type(dic[_])}')

Loading…
Cancel
Save