|
|
@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
import random
|
|
|
|
|
|
|
|
import operator
|
|
|
|
import pandas as pd
|
|
|
|
import pandas as pd
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
@ -17,6 +19,7 @@ def mining(train: pd.DataFrame):
|
|
|
|
data = train.drop(columns=['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id], inplace=False)
|
|
|
|
data = train.drop(columns=['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id], inplace=False)
|
|
|
|
# data中现存属性:除key以外左右表属性和gold, 不含_id
|
|
|
|
# data中现存属性:除key以外左右表属性和gold, 不含_id
|
|
|
|
columns = data.columns.values.tolist()
|
|
|
|
columns = data.columns.values.tolist()
|
|
|
|
|
|
|
|
columns_without_prefix = [_.replace('ltable_', '') for _ in columns if _.startswith('ltable_')]
|
|
|
|
|
|
|
|
|
|
|
|
# 列表, 每个元素为二元组, 包含对应列的索引
|
|
|
|
# 列表, 每个元素为二元组, 包含对应列的索引
|
|
|
|
col_tuple_list = build_col_tuple_list(columns)
|
|
|
|
col_tuple_list = build_col_tuple_list(columns)
|
|
|
@ -61,9 +64,6 @@ def mining(train: pd.DataFrame):
|
|
|
|
# 根据索引将匹配的行标签置为1
|
|
|
|
# 根据索引将匹配的行标签置为1
|
|
|
|
sim_table_tensor_labeled[match_pair_indices, -1] = 1.00
|
|
|
|
sim_table_tensor_labeled[match_pair_indices, -1] = 1.00
|
|
|
|
|
|
|
|
|
|
|
|
md_list = init_md_list(len(col_tuple_list))
|
|
|
|
|
|
|
|
result_md_list = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sorted_unique_value_tensor_list = []
|
|
|
|
sorted_unique_value_tensor_list = []
|
|
|
|
for _ in range(len(col_tuple_list)):
|
|
|
|
for _ in range(len(col_tuple_list)):
|
|
|
|
# 将sim_table_tensor每一列的值从小到大排列,加入列表
|
|
|
|
# 将sim_table_tensor每一列的值从小到大排列,加入列表
|
|
|
@ -72,46 +72,58 @@ def mining(train: pd.DataFrame):
|
|
|
|
sorted_unique_value_tensor = sorted_unique_value_tensor[sorted_unique_value_tensor >= 0]
|
|
|
|
sorted_unique_value_tensor = sorted_unique_value_tensor[sorted_unique_value_tensor >= 0]
|
|
|
|
sorted_unique_value_tensor_list.append(sorted_unique_value_tensor)
|
|
|
|
sorted_unique_value_tensor_list.append(sorted_unique_value_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 随机生成候选MD, 形成一个二维张量, 每一行代表一个候选MD
|
|
|
|
|
|
|
|
candidate_mds_tensor = build_candidate_md_matrix(sorted_unique_value_tensor_list)
|
|
|
|
result_list = []
|
|
|
|
result_list = []
|
|
|
|
|
|
|
|
# 遍历每一个MD
|
|
|
|
|
|
|
|
for _ in tqdm(range(candidate_mds_tensor.shape[0])):
|
|
|
|
|
|
|
|
# 对每一个MD加一个0.5的标记, 意为match
|
|
|
|
|
|
|
|
md_tensor_labeled = torch.cat((candidate_mds_tensor[_], torch.tensor([0.5], device='cuda')), 0)
|
|
|
|
|
|
|
|
abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled)
|
|
|
|
|
|
|
|
if abs_support >= support_threshold and confidence >= confidence_threshold:
|
|
|
|
|
|
|
|
md_list_format = [round(i, 2) for i in candidate_mds_tensor[_].tolist()]
|
|
|
|
|
|
|
|
md_dict_format = {}
|
|
|
|
|
|
|
|
for k in range(0, len(columns_without_prefix)):
|
|
|
|
|
|
|
|
md_dict_format[columns_without_prefix[k]] = md_list_format[k]
|
|
|
|
|
|
|
|
result_list.append((md_dict_format, abs_support, confidence))
|
|
|
|
|
|
|
|
result_list.sort(key=operator.itemgetter(2), reverse=True)
|
|
|
|
|
|
|
|
mds_to_txt(result_list)
|
|
|
|
|
|
|
|
return result_list
|
|
|
|
|
|
|
|
|
|
|
|
# 遍历MD列表, 将满足的直接加入结果列表, 不满足的看能否收紧, 不能收紧直接跳过
|
|
|
|
# 遍历MD列表, 将满足的直接加入结果列表, 不满足的看能否收紧, 不能收紧直接跳过
|
|
|
|
# 若能收紧则将收紧后的一个个加入暂存列表, 并在该轮遍历结束后替换MD列表, 直到MD列表为空
|
|
|
|
# 若能收紧则将收紧后的一个个加入暂存列表, 并在该轮遍历结束后替换MD列表, 直到MD列表为空
|
|
|
|
while len(md_list) > 0:
|
|
|
|
# while len(md_list) > 0:
|
|
|
|
tmp_list = []
|
|
|
|
# tmp_list = []
|
|
|
|
for md_tensor in tqdm(md_list):
|
|
|
|
# for md_tensor in tqdm(md_list):
|
|
|
|
md_tensor_labeled = torch.cat((md_tensor, torch.tensor([0.5], device='cuda')), 0)
|
|
|
|
# md_tensor_labeled = torch.cat((md_tensor, torch.tensor([0.5], device='cuda')), 0)
|
|
|
|
abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled)
|
|
|
|
# abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled)
|
|
|
|
# 如果support小于1, 没必要收紧阈值, 跳过
|
|
|
|
# # 如果support小于1, 没必要收紧阈值, 跳过
|
|
|
|
if abs_support >= 1:
|
|
|
|
# if abs_support >= 1:
|
|
|
|
# 如果support满足但confidence不满足, 需要收紧阈值
|
|
|
|
# # 如果support满足但confidence不满足, 需要收紧阈值
|
|
|
|
if confidence < confidence_threshold:
|
|
|
|
# if confidence < confidence_threshold:
|
|
|
|
for _ in range(len(md_tensor)):
|
|
|
|
# for _ in range(len(md_tensor)):
|
|
|
|
new_md_tensor = md_tensor.clone()
|
|
|
|
# new_md_tensor = md_tensor.clone()
|
|
|
|
if new_md_tensor[_] == -1.00:
|
|
|
|
# if new_md_tensor[_] == -1.00:
|
|
|
|
new_md_tensor[_] = sorted_unique_value_tensor_list[_][0]
|
|
|
|
# new_md_tensor[_] = sorted_unique_value_tensor_list[_][0]
|
|
|
|
if len(tmp_list) == 0:
|
|
|
|
# if len(tmp_list) == 0:
|
|
|
|
tmp_list.append(new_md_tensor)
|
|
|
|
# tmp_list.append(new_md_tensor)
|
|
|
|
else:
|
|
|
|
# else:
|
|
|
|
stacked_tmp_tensors = torch.stack(tmp_list)
|
|
|
|
# stacked_tmp_tensors = torch.stack(tmp_list)
|
|
|
|
is_contained = (stacked_tmp_tensors == new_md_tensor) .all(dim=1).any()
|
|
|
|
# is_contained = (stacked_tmp_tensors == new_md_tensor) .all(dim=1).any()
|
|
|
|
if not is_contained:
|
|
|
|
# if not is_contained:
|
|
|
|
tmp_list.append(new_md_tensor)
|
|
|
|
# tmp_list.append(new_md_tensor)
|
|
|
|
else:
|
|
|
|
# else:
|
|
|
|
a_tensor = sorted_unique_value_tensor_list[_]
|
|
|
|
# a_tensor = sorted_unique_value_tensor_list[_]
|
|
|
|
b_value = new_md_tensor[_]
|
|
|
|
# b_value = new_md_tensor[_]
|
|
|
|
next_index = torch.where(a_tensor == b_value)[0].item() + 1
|
|
|
|
# next_index = torch.where(a_tensor == b_value)[0].item() + 1
|
|
|
|
if next_index < len(a_tensor):
|
|
|
|
# if next_index < len(a_tensor):
|
|
|
|
new_md_tensor[_] = a_tensor[next_index]
|
|
|
|
# new_md_tensor[_] = a_tensor[next_index]
|
|
|
|
tmp_list.append(new_md_tensor)
|
|
|
|
# tmp_list.append(new_md_tensor)
|
|
|
|
# torch.where(sorted_unique_value_tensor_list[2] == 0.16)[0].item()
|
|
|
|
# # torch.where(sorted_unique_value_tensor_list[2] == 0.16)[0].item()
|
|
|
|
# 如果都满足, 直接加进结果列表
|
|
|
|
# # 如果都满足, 直接加进结果列表
|
|
|
|
else:
|
|
|
|
# else:
|
|
|
|
result_list.append(md_tensor)
|
|
|
|
# result_list.append(md_tensor)
|
|
|
|
md_list = tmp_list
|
|
|
|
# md_list = tmp_list
|
|
|
|
|
|
|
|
|
|
|
|
print(1)
|
|
|
|
|
|
|
|
# sim_tensor = torch.matmul(norm_table_tensor, norm_table_tensor.transpose(1, 2))
|
|
|
|
|
|
|
|
# sim_tensor = sim_tensor.float()
|
|
|
|
|
|
|
|
# sim_tensor = torch.round(sim_tensor, decimals=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_col_tuple_list(columns_):
|
|
|
|
def build_col_tuple_list(columns_):
|
|
|
@ -124,13 +136,13 @@ def build_col_tuple_list(columns_):
|
|
|
|
return col_tuple_list_
|
|
|
|
return col_tuple_list_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_md_list(md_dimension: int):
|
|
|
|
# def init_md_list(md_dimension: int):
|
|
|
|
md_list_ = []
|
|
|
|
# md_list_ = []
|
|
|
|
# 创建全为-1的初始MD, 保留两位小数
|
|
|
|
# # 创建全为-1的初始MD, 保留两位小数
|
|
|
|
init_md_tensor = torch.full((md_dimension, ), -1.0, device='cuda')
|
|
|
|
# init_md_tensor = torch.full((md_dimension, ), -1.0, device='cuda')
|
|
|
|
init_md_tensor = torch.round(init_md_tensor, decimals=2)
|
|
|
|
# init_md_tensor = torch.round(init_md_tensor, decimals=2)
|
|
|
|
md_list_.append(init_md_tensor)
|
|
|
|
# md_list_.append(init_md_tensor)
|
|
|
|
return md_list_
|
|
|
|
# return md_list_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_):
|
|
|
|
def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_):
|
|
|
@ -155,3 +167,42 @@ def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_):
|
|
|
|
confidence_ = abs_strict_support_ / abs_support_ if abs_support_ > 0 else 0
|
|
|
|
confidence_ = abs_strict_support_ / abs_support_ if abs_support_ > 0 else 0
|
|
|
|
return abs_support_, confidence_
|
|
|
|
return abs_support_, confidence_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 随机生成MD, 拼成一个矩阵, 每一行代表一条MD
|
|
|
|
|
|
|
|
def build_candidate_md_matrix(sorted_unique_value_tensor_list_: list):
|
|
|
|
|
|
|
|
# 假设先随机抽取20000条
|
|
|
|
|
|
|
|
length_ = len(sorted_unique_value_tensor_list_)
|
|
|
|
|
|
|
|
N = 20000
|
|
|
|
|
|
|
|
# 对于第一列所有相似度取值, 随机有放回地抽取N个, 生成行索引
|
|
|
|
|
|
|
|
indices = torch.randint(0, len(sorted_unique_value_tensor_list_[0]), (N, 1))
|
|
|
|
|
|
|
|
# 为每一列生成一个索引张量, 表示从相应列张量中随机选择的值的索引
|
|
|
|
|
|
|
|
for _ in range(1, length_):
|
|
|
|
|
|
|
|
indices = torch.cat((indices, torch.randint(0, len(sorted_unique_value_tensor_list_[_]), (N, 1))), dim=1)
|
|
|
|
|
|
|
|
# 使用生成的索引从每个列相似度张量中选取值, 构成新的张量
|
|
|
|
|
|
|
|
candidate_md_matrix_list = []
|
|
|
|
|
|
|
|
for _ in range(length_):
|
|
|
|
|
|
|
|
candidate_md_matrix_list.append(sorted_unique_value_tensor_list_[_][indices[:, _].long()].unsqueeze(1))
|
|
|
|
|
|
|
|
candidate_md_matrix_ = torch.cat(candidate_md_matrix_list, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 此tensor将与其他置为-1的tensor拼接
|
|
|
|
|
|
|
|
joint_candidate_md_matrix_ = candidate_md_matrix_.clone()
|
|
|
|
|
|
|
|
# 随机将1列, 2列......, M-1列置为-1
|
|
|
|
|
|
|
|
for i in range(length_ - 1):
|
|
|
|
|
|
|
|
index_list_format = []
|
|
|
|
|
|
|
|
for j in range(candidate_md_matrix_.shape[0]):
|
|
|
|
|
|
|
|
# 对每条MD,随机选择将要置为-1的列索引
|
|
|
|
|
|
|
|
index_list_format.append(random.sample([_ for _ in range(0, length_)], i + 1))
|
|
|
|
|
|
|
|
index = torch.tensor(index_list_format, device='cuda')
|
|
|
|
|
|
|
|
# 随机调整为-1后的MD集合
|
|
|
|
|
|
|
|
modified_candidate = candidate_md_matrix_.scatter(1, index, -1)
|
|
|
|
|
|
|
|
joint_candidate_md_matrix_ = torch.cat((joint_candidate_md_matrix_, modified_candidate), 0)
|
|
|
|
|
|
|
|
joint_candidate_md_matrix_ = joint_candidate_md_matrix_.unique(dim=0)
|
|
|
|
|
|
|
|
return joint_candidate_md_matrix_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mds_to_txt(result_list_):
|
|
|
|
|
|
|
|
p = md_output_dir + "mds.txt"
|
|
|
|
|
|
|
|
with open(p, 'w') as f:
|
|
|
|
|
|
|
|
for _ in result_list_:
|
|
|
|
|
|
|
|
f.write(f'MD: {str(_[0])}\tAbsolute Support: {str(_[1])}\tConfidence: {str(_[2])}')
|
|
|
|
|
|
|
|
f.write('\n')
|
|
|
|