|
|
|
@ -1,52 +1,69 @@
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
|
|
|
|
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
|
|
|
|
|
import pdb
|
|
|
|
|
import pickle
|
|
|
|
|
import torch
|
|
|
|
|
import json
|
|
|
|
|
import numpy as np
|
|
|
|
|
import random
|
|
|
|
|
# from ditto.matcher import *
|
|
|
|
|
from setting import *
|
|
|
|
|
from colorama import Fore
|
|
|
|
|
from argparse import Namespace
|
|
|
|
|
import ConfigSpace
|
|
|
|
|
from ConfigSpace import Configuration
|
|
|
|
|
from ditto.matcher import set_seed, to_str, classify, predict, tune_threshold, load_model
|
|
|
|
|
from ditto.matcher import set_seed, predict, tune_threshold, load_model
|
|
|
|
|
from ConfigSpace.read_and_write import json as csj
|
|
|
|
|
from ditto.ditto_light.dataset import DittoDataset
|
|
|
|
|
from ditto.ditto_light.summarize import Summarizer
|
|
|
|
|
from ditto.ditto_light.knowledge import *
|
|
|
|
|
from ditto.ditto_light.ditto import train
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
|
|
|
|
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
|
|
|
|
|
|
|
|
|
|
def matching(hpo_config):
|
|
|
|
|
print(Fore.BLUE + f'Config: {hpo_config}')
|
|
|
|
|
|
|
|
|
|
def matching(config):
|
|
|
|
|
print(Fore.BLUE + f'Config: {config}')
|
|
|
|
|
|
|
|
|
|
# with open(md_output_dir + r"\mds.pickle", "rb") as file:
|
|
|
|
|
# md_list = pickle.load(file)
|
|
|
|
|
with open(md_output_dir + "/mds.pickle", "rb") as file:
|
|
|
|
|
md_list = pickle.load(file)
|
|
|
|
|
|
|
|
|
|
hp = Namespace()
|
|
|
|
|
hp.task = directory_path.replace('/root/hjt/DeepMatcher Dataset/', '')
|
|
|
|
|
|
|
|
|
|
# only a single task for baseline
|
|
|
|
|
task = hp.task
|
|
|
|
|
# load task configuration
|
|
|
|
|
configs = json.load(open('../ditto/configs.json'))
|
|
|
|
|
configs = {conf['name']: conf for conf in configs}
|
|
|
|
|
config = configs[task]
|
|
|
|
|
|
|
|
|
|
config['trainset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['trainset']
|
|
|
|
|
config['validset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['validset']
|
|
|
|
|
config['testset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['testset']
|
|
|
|
|
|
|
|
|
|
trainset = config['trainset']
|
|
|
|
|
validset = config['validset']
|
|
|
|
|
testset = config['testset']
|
|
|
|
|
|
|
|
|
|
hp.run_id = 0
|
|
|
|
|
hp.batch_size = config['batch_size']
|
|
|
|
|
hp.max_len = config['max_len']
|
|
|
|
|
hp.batch_size = hpo_config['batch_size']
|
|
|
|
|
hp.max_len = hpo_config['max_len']
|
|
|
|
|
hp.lr = 3e-5
|
|
|
|
|
hp.n_epochs = 20
|
|
|
|
|
# hp.finetuning
|
|
|
|
|
hp.save_model = True
|
|
|
|
|
hp.input_path = '/root/autodl-tmp/input/candidates_small.jsonl'
|
|
|
|
|
hp.input_path = config['testset']
|
|
|
|
|
hp.output_path = '/root/autodl-tmp/output/matched_small.jsonl'
|
|
|
|
|
|
|
|
|
|
hp.logdir = '/root/autodl-tmp/checkpoints/'
|
|
|
|
|
hp.checkpoint_path = '/root/autodl-tmp/checkpoints/'
|
|
|
|
|
hp.lm = config['language_model']
|
|
|
|
|
hp.fp16 = config['half_precision_float']
|
|
|
|
|
hp.da = config['data_augmentation']
|
|
|
|
|
hp.lm = hpo_config['language_model']
|
|
|
|
|
hp.fp16 = hpo_config['half_precision_float']
|
|
|
|
|
hp.da = hpo_config['data_augmentation']
|
|
|
|
|
hp.alpha_aug = 0.8
|
|
|
|
|
hp.dk = None
|
|
|
|
|
hp.summarize = config['summarize']
|
|
|
|
|
hp.summarize = hpo_config['summarize']
|
|
|
|
|
hp.size = None
|
|
|
|
|
hp.use_gpu = True
|
|
|
|
|
|
|
|
|
@ -57,23 +74,11 @@ def matching(config):
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
|
|
|
|
|
|
# only a single task for baseline
|
|
|
|
|
task = hp.task
|
|
|
|
|
|
|
|
|
|
# create the tag of the run
|
|
|
|
|
run_tag = '%s_lm=%s_da=%s_dk=%s_su=%s_size=%s_id=%d' % (task, hp.lm, hp.da,
|
|
|
|
|
hp.dk, hp.summarize, str(hp.size), hp.run_id)
|
|
|
|
|
run_tag = run_tag.replace('/', '_')
|
|
|
|
|
|
|
|
|
|
# load task configuration
|
|
|
|
|
configs = json.load(open('configs.json'))
|
|
|
|
|
configs = {conf['name']: conf for conf in configs}
|
|
|
|
|
config = configs[task]
|
|
|
|
|
|
|
|
|
|
trainset = config['trainset']
|
|
|
|
|
validset = config['validset']
|
|
|
|
|
testset = config['testset']
|
|
|
|
|
|
|
|
|
|
# summarize the sequences up to the max sequence length
|
|
|
|
|
if hp.summarize:
|
|
|
|
|
summarizer = Summarizer(config, lm=hp.lm)
|
|
|
|
@ -101,6 +106,7 @@ def matching(config):
|
|
|
|
|
hp.lm, hp.use_gpu, hp.fp16)
|
|
|
|
|
|
|
|
|
|
summarizer = dk_injector = None
|
|
|
|
|
pdb.set_trace()
|
|
|
|
|
if hp.summarize:
|
|
|
|
|
summarizer = Summarizer(config, hp.lm)
|
|
|
|
|
|
|
|
|
@ -117,12 +123,14 @@ def matching(config):
|
|
|
|
|
# todo indicators
|
|
|
|
|
# write results
|
|
|
|
|
# interpretability
|
|
|
|
|
indicators = {}
|
|
|
|
|
return indicators
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# todo ml_er function
|
|
|
|
|
def ml_er(config: Configuration):
|
|
|
|
|
indicators = matching(config)
|
|
|
|
|
output_path = er_output_dir + r"\eval_result.txt"
|
|
|
|
|
output_path = er_output_dir + "/eval_result.txt"
|
|
|
|
|
with open(output_path, 'w') as _f:
|
|
|
|
|
_f.write('F1:' + str(indicators["F1"]) + '\n')
|
|
|
|
|
_f.write('interpretability:' + str(indicators['interpretability']) + '\n')
|
|
|
|
@ -130,12 +138,12 @@ def ml_er(config: Configuration):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
if os.path.isfile(hpo_output_dir + r"\incumbent.json"):
|
|
|
|
|
with open(hpo_output_dir + r"\configspace.json", 'r') as f:
|
|
|
|
|
if os.path.isfile(hpo_output_dir + "/incumbent.json"):
|
|
|
|
|
with open(hpo_output_dir + "/configspace.json", 'r') as f:
|
|
|
|
|
dict_configspace = json.load(f)
|
|
|
|
|
str_configspace = json.dumps(dict_configspace)
|
|
|
|
|
configspace = csj.read(str_configspace)
|
|
|
|
|
with open(hpo_output_dir + r"\incumbent.json", 'r') as f:
|
|
|
|
|
with open(hpo_output_dir + "/incumbent.json", 'r') as f:
|
|
|
|
|
dic = json.load(f)
|
|
|
|
|
configuration = ConfigSpace.Configuration(configspace, values=dic)
|
|
|
|
|
ml_er(configuration)
|
|
|
|
|